Department of Electrical Engineering and Computer Science, University of Liège, 4000, Liège, Belgium.
Sci Rep. 2018 Feb 21;8(1):3384. doi: 10.1038/s41598-018-21715-0.
The elucidation of gene regulatory networks is one of the major challenges of systems biology. Measurements about genes that are exploited by network inference methods are typically available either in the form of steady-state expression vectors or time series expression data. In our previous work, we proposed the GENIE3 method that exploits variable importance scores derived from Random forests to identify the regulators of each target gene. This method provided state-of-the-art performance on several benchmark datasets, but it could however not specifically be applied to time series expression data. We propose here an adaptation of the GENIE3 method, called dynamical GENIE3 (dynGENIE3), for handling both time series and steady-state expression data. The proposed method is evaluated extensively on the artificial DREAM4 benchmarks and on three real time series expression datasets. Although dynGENIE3 does not systematically yield the best performance on each and every network, it is competitive with diverse methods from the literature, while preserving the main advantages of GENIE3 in terms of scalability.
基因调控网络的阐明是系统生物学的主要挑战之一。网络推断方法所利用的关于基因的测量值通常以稳态表达向量或时间序列表达数据的形式提供。在我们之前的工作中,我们提出了 GENIE3 方法,该方法利用随机森林得出的变量重要性得分来识别每个目标基因的调节剂。该方法在几个基准数据集上取得了最先进的性能,但它不能专门应用于时间序列表达数据。我们在这里提出了 GENIE3 方法的一种适应方法,称为动态 GENIE3(dynGENIE3),用于处理时间序列和稳态表达数据。所提出的方法在人工 DREAM4 基准和三个真实的时间序列表达数据集上进行了广泛评估。尽管 dynGENIE3 并非在每个网络上都能系统地获得最佳性能,但它与文献中的多种方法具有竞争力,同时保持了 GENIE3 在可扩展性方面的主要优势。