Llavero Hurtado Maica, Fuller Heidi R, Wong Andrew M S, Eaton Samantha L, Gillingwater Thomas H, Pennetta Giuseppa, Cooper Jonathan D, Wishart Thomas M
Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
Institute for Science and Technology in Medicine, Keele University, Staffordshire, Keele, ST5 5BG, UK.
Sci Rep. 2017 Sep 29;7(1):12412. doi: 10.1038/s41598-017-12603-0.
Synapses are an early pathological target in many neurodegenerative diseases ranging from well-known adult onset conditions such as Alzheimer and Parkinson disease to neurodegenerative conditions of childhood such as spinal muscular atrophy (SMA) and neuronal ceroid lipofuscinosis (NCLs). However, the reasons why synapses are particularly vulnerable to such a broad range of neurodegeneration inducing stimuli remains unknown. To identify molecular modulators of synaptic stability and degeneration, we have used the Cln3 mouse model of a juvenile form of NCL. We profiled and compared the molecular composition of anatomically-distinct, differentially-affected pre-synaptic populations from the Cln3 mouse brain using proteomics followed by bioinformatic analyses. Identified protein candidates were then tested using a Drosophila CLN3 model to study their ability to modify the CLN3-neurodegenerative phenotype in vivo. We identified differential perturbations in a range of molecular cascades correlating with synaptic vulnerability, including valine catabolism and rho signalling pathways. Genetic and pharmacological targeting of key 'hub' proteins in such pathways was sufficient to modulate phenotypic presentation in a Drosophila CLN3 model. We propose that such a workflow provides a target rich method for the identification of novel disease regulators which could be applicable to the study of other conditions where appropriate models exist.
突触是许多神经退行性疾病早期的病理靶点,这些疾病涵盖了从诸如阿尔茨海默病和帕金森病等著名的成人发病病症到诸如脊髓性肌萎缩症(SMA)和神经元蜡样脂褐质沉积症(NCLs)等儿童神经退行性病症。然而,突触为何特别容易受到如此广泛的神经退行性变诱导刺激的原因仍然未知。为了确定突触稳定性和退化的分子调节因子,我们使用了NCL青少年型的Cln3小鼠模型。我们通过蛋白质组学对来自Cln3小鼠大脑中解剖学上不同、受影响程度不同的突触前群体的分子组成进行了分析和比较,随后进行了生物信息学分析。然后使用果蝇CLN3模型对鉴定出的蛋白质候选物进行测试,以研究它们在体内改变CLN3神经退行性表型的能力。我们在一系列与突触易损性相关的分子级联反应中发现了差异扰动,包括缬氨酸分解代谢和rho信号通路。对这些途径中关键的“枢纽”蛋白进行基因和药理学靶向足以调节果蝇CLN3模型中的表型表现。我们提出,这样的工作流程为鉴定新型疾病调节因子提供了一种富含靶点的方法,这种方法在存在合适模型的情况下可应用于其他病症的研究。