Suppr超能文献

利用大数据和深度学习实现乳腺癌放射治疗的临床靶区全自动、鲁棒分割。

Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning.

机构信息

National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.

National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.

出版信息

Phys Med. 2018 Jun;50:13-19. doi: 10.1016/j.ejmp.2018.05.006. Epub 2018 May 19.

Abstract

PURPOSE

To train and evaluate a very deep dilated residual network (DD-ResNet) for fast and consistent auto-segmentation of the clinical target volume (CTV) for breast cancer (BC) radiotherapy with big data.

METHODS

DD-ResNet was an end-to-end model enabling fast training and testing. We used big data comprising 800 patients who underwent breast-conserving therapy for evaluation. The CTV were validated by experienced radiation oncologists. We performed a fivefold cross-validation to test the performance of the model. The segmentation accuracy was quantified by the Dice similarity coefficient (DSC) and the Hausdorff distance (HD). The performance of the proposed model was evaluated against two different deep learning models: deep dilated convolutional neural network (DDCNN) and deep deconvolutional neural network (DDNN).

RESULTS

Mean DSC values of DD-ResNet (0.91 and 0.91) were higher than the other two networks (DDCNN: 0.85 and 0.85; DDNN: 0.88 and 0.87) for both right-sided and left-sided BC. It also has smaller mean HD values of 10.5 mm and 10.7 mm compared with DDCNN (15.1 mm and 15.6 mm) and DDNN (13.5 mm and 14.1 mm). Mean segmentation time was 4 s, 21 s and 15 s per patient with DDCNN, DDNN and DD-ResNet, respectively. The DD-ResNet was also superior with regard to results in the literature.

CONCLUSIONS

The proposed method could segment the CTV accurately with acceptable time consumption. It was invariant to the body size and shape of patients and could improve the consistency of target delineation and streamline radiotherapy workflows.

摘要

目的

利用大数据训练和评估一种非常深的扩张残差网络(DD-ResNet),以便快速、一致地对乳腺癌(BC)放射治疗的临床靶区(CTV)进行自动分割。

方法

DD-ResNet 是一种端到端模型,能够实现快速的训练和测试。我们使用包含 800 名接受保乳治疗的患者的大数据进行评估。CTV 由有经验的放射肿瘤学家进行验证。我们进行了五折交叉验证来测试模型的性能。分割准确性通过 Dice 相似系数(DSC)和 Hausdorff 距离(HD)来量化。将所提出的模型的性能与两种不同的深度学习模型(深扩张卷积神经网络(DDCNN)和深去卷积神经网络(DDNN))进行了比较。

结果

DD-ResNet 的平均 DSC 值(0.91 和 0.91)高于其他两种网络(DDCNN:0.85 和 0.85;DDNN:0.88 和 0.87),用于右侧和左侧 BC。与 DDCNN(15.1mm 和 15.6mm)和 DDNN(13.5mm 和 14.1mm)相比,它的平均 HD 值也较小,分别为 10.5mm 和 10.7mm。DDCNN、DDNN 和 DD-ResNet 分别对每个患者的平均分割时间为 4s、21s 和 15s。DD-ResNet 在文献中的结果也更优。

结论

该方法能够以可接受的时间消耗准确地分割 CTV。它对患者的体型和形状不变,能够提高靶区勾画的一致性,并简化放射治疗工作流程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验