Erdur Ayhan Can, Rusche Daniel, Scholz Daniel, Kiechle Johannes, Fischer Stefan, Llorián-Salvador Óscar, Buchner Josef A, Nguyen Mai Q, Etzel Lucas, Weidner Jonas, Metz Marie-Christin, Wiestler Benedikt, Schnabel Julia, Rueckert Daniel, Combs Stephanie E, Peeken Jan C
Institute for Artificial Intelligence and Informatics in Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str., 81675, Munich, Bavaria, Germany.
Department of Radiation Oncology, TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str., 81675, Munich, Bavaria, Germany.
Strahlenther Onkol. 2025 Mar;201(3):236-254. doi: 10.1007/s00066-024-02262-2. Epub 2024 Aug 6.
The rapid development of artificial intelligence (AI) has gained importance, with many tools already entering our daily lives. The medical field of radiation oncology is also subject to this development, with AI entering all steps of the patient journey. In this review article, we summarize contemporary AI techniques and explore the clinical applications of AI-based automated segmentation models in radiotherapy planning, focusing on delineation of organs at risk (OARs), the gross tumor volume (GTV), and the clinical target volume (CTV). Emphasizing the need for precise and individualized plans, we review various commercial and freeware segmentation tools and also state-of-the-art approaches. Through our own findings and based on the literature, we demonstrate improved efficiency and consistency as well as time savings in different clinical scenarios. Despite challenges in clinical implementation such as domain shifts, the potential benefits for personalized treatment planning are substantial. The integration of mathematical tumor growth models and AI-based tumor detection further enhances the possibilities for refining target volumes. As advancements continue, the prospect of one-stop-shop segmentation and radiotherapy planning represents an exciting frontier in radiotherapy, potentially enabling fast treatment with enhanced precision and individualization.
人工智能(AI)的快速发展已变得至关重要,许多工具已经进入我们的日常生活。放射肿瘤学医学领域也受到这一发展的影响,AI进入了患者就医的各个环节。在这篇综述文章中,我们总结了当代AI技术,并探讨了基于AI的自动分割模型在放射治疗计划中的临床应用,重点关注危及器官(OARs)、大体肿瘤体积(GTV)和临床靶体积(CTV)的勾画。强调精确和个性化计划的必要性,我们回顾了各种商业和免费软件分割工具以及最新方法。通过我们自己的研究结果并基于文献,我们展示了在不同临床场景中提高的效率和一致性以及时间节省。尽管在临床实施中存在诸如领域转移等挑战,但个性化治疗计划的潜在益处是巨大的。数学肿瘤生长模型与基于AI的肿瘤检测的整合进一步增强了细化靶体积的可能性。随着进展的持续,一站式分割和放射治疗计划的前景代表了放射治疗中一个令人兴奋的前沿领域,有可能实现具有更高精度和个性化的快速治疗。