Department of Radiotherapy Center, Wenzhou Medical University First Affiliated Hospital, Wenzhou, People's Republic of China.
Department of Medical Engineering, Wenzhou Medical University First Affiliated Hospital, Wenzhou, People's Republic of China.
J Appl Clin Med Phys. 2022 Jul;23(7):e13631. doi: 10.1002/acm2.13631. Epub 2022 May 9.
An accurate and reliable target volume delineation is critical for the safe and successful radiotherapy. The purpose of this study is to develop new 2D and 3D automatic segmentation models based on RefineNet for clinical target volume (CTV) and organs at risk (OARs) for postoperative cervical cancer based on computed tomography (CT) images.
A 2D RefineNet and 3D RefineNetPlus3D were adapted and built to automatically segment CTVs and OARs on a total of 44 222 CT slices of 313 patients with stage I-III cervical cancer. Fully convolutional networks (FCNs), U-Net, context encoder network (CE-Net), UNet3D, and ResUNet3D were also trained and tested with randomly divided training and validation sets, respectively. The performances of these automatic segmentation models were evaluated by Dice similarity coefficient (DSC), Jaccard similarity coefficient, and average symmetric surface distance when comparing them with manual segmentations with the test data.
The DSC for RefineNet, FCN, U-Net, CE-Net, UNet3D, ResUNet3D, and RefineNet3D were 0.82, 0.80, 0.82, 0.81, 0.80, 0.81, and 0.82 with a mean contouring time of 3.2, 3.4, 8.2, 3.9, 9.8, 11.4, and 6.4 s, respectively. The generated RefineNetPlus3D demonstrated a good performance in the automatic segmentation of bladder, small intestine, rectum, right and left femoral heads with a DSC of 0.97, 0.95, 091, 0.98, and 0.98, respectively, with a mean computation time of 6.6 s.
The newly adapted RefineNet and developed RefineNetPlus3D were promising automatic segmentation models with accurate and clinically acceptable CTV and OARs for cervical cancer patients in postoperative radiotherapy.
精确、可靠的靶区勾画对于放射治疗的安全和成功至关重要。本研究旨在基于术后宫颈癌的 CT 图像,开发新的 2D 和 3D 自动分割模型,用于勾画临床靶区(CTV)和危及器官(OARs)。
适应并构建了 2D RefineNet 和 3D RefineNetPlus3D,以自动分割 313 例 I-III 期宫颈癌患者的总共 44222 张 CT 切片的 CTV 和 OAR。全卷积网络(FCN)、U-Net、上下文编码器网络(CE-Net)、UNet3D 和 ResUNet3D 也分别通过随机划分的训练集和验证集进行了训练和测试。使用测试数据,通过 Dice 相似系数(DSC)、Jaccard 相似系数和平均对称表面距离来评估这些自动分割模型与手动分割之间的性能。
RefineNet、FCN、U-Net、CE-Net、UNet3D、ResUNet3D 和 RefineNet3D 的 DSC 分别为 0.82、0.80、0.82、0.81、0.80、0.81 和 0.82,平均勾画时间分别为 3.2、3.4、8.2、3.9、9.8、11.4 和 6.4 s。生成的 RefineNetPlus3D 在自动分割膀胱、小肠、直肠、左右股骨头方面表现出良好的性能,DSC 分别为 0.97、0.95、0.91、0.98 和 0.98,平均计算时间为 6.6 s。
新适应的 RefineNet 和开发的 RefineNetPlus3D 是有前途的自动分割模型,用于宫颈癌患者术后放射治疗的 CTV 和 OAR 勾画,具有准确性和临床可接受性。