Suppr超能文献

在存在竞争性终末事件的情况下评估复发标记过程的效用测量。

Evaluating Utility Measurement from Recurrent Marker Processes in the Presence of Competing Terminal Events.

作者信息

Sun Yifei, Wang Mei-Cheng

机构信息

Department of Biostatistics, School of Public Health, Johns Hopkins University, Baltimore, MD 21205 (

出版信息

J Am Stat Assoc. 2017;112(518):745-756. doi: 10.1080/01621459.2016.1166113. Epub 2017 Apr 12.

Abstract

In follow-up studies, utility marker measurements are usually collected upon the occurrence of recurrent events until a terminal event such as death takes place. In this article, we define the recurrent marker process to characterize utility accumulation over time. For example, with medical cost and repeated hospitalizations being treated as marker and recurrent events respectively, the recurrent marker process is the trajectory of cumulative cost, which stops to increase after death. In many applications, competing risks arise as subjects are at risk of more than one mutually exclusive terminal event, such as death from different causes, and modeling the recurrent marker process for each failure type is often of interest. However, censoring creates challenges in the methodological development, because for censored subjects, both failure type and recurrent marker process after censoring are unobserved. To circumvent this problem, we propose a nonparametric framework for recurrent marker process with competing terminal events. In the presence of competing risks, we start with an estimator by using marker information from uncensored subjects. As a result, the estimator can be inefficient under heavy censoring. To improve efficiency, we propose a second estimator by combining the first estimator with auxiliary information from the estimate under non-competing risks model. The large sample properties and optimality of the second estimator is established. Simulation studies and an application to the SEER-Medicare linked data are presented to illustrate the proposed methods. Supplemental materials are available online.

摘要

在随访研究中,效用指标测量通常在复发事件发生时收集,直至发生死亡等终末事件。在本文中,我们定义了复发指标过程来描述效用随时间的累积情况。例如,将医疗费用和反复住院分别视为指标和复发事件,复发指标过程就是累积费用的轨迹,在死亡后停止增加。在许多应用中,由于受试者面临不止一种相互排斥的终末事件的风险,如死于不同原因,对每种失败类型的复发指标过程进行建模通常很有意义。然而,删失在方法学发展中带来了挑战,因为对于删失的受试者,删失后的失败类型和复发指标过程都是未观察到的。为了规避这个问题,我们提出了一个用于具有竞争终末事件的复发指标过程的非参数框架。在存在竞争风险的情况下,我们首先使用未删失受试者的指标信息构建一个估计量。结果,在严重删失的情况下,该估计量可能效率不高。为了提高效率,我们通过将第一个估计量与来自非竞争风险模型下估计的辅助信息相结合,提出了第二个估计量。建立了第二个估计量的大样本性质和最优性。给出了模拟研究以及对SEER - Medicare链接数据的应用,以说明所提出的方法。补充材料可在线获取。

相似文献

1
Evaluating Utility Measurement from Recurrent Marker Processes in the Presence of Competing Terminal Events.
J Am Stat Assoc. 2017;112(518):745-756. doi: 10.1080/01621459.2016.1166113. Epub 2017 Apr 12.
2
A kernel nonparametric quantile estimator for right-censored competing risks data.
J Appl Stat. 2019 Jun 19;47(1):61-75. doi: 10.1080/02664763.2019.1631267. eCollection 2020.
3
A note on competing risks in survival data analysis.
Br J Cancer. 2004 Oct 4;91(7):1229-35. doi: 10.1038/sj.bjc.6602102.
4
Nonparametric inference for the joint distribution of recurrent marked variables and recurrent survival time.
Lifetime Data Anal. 2017 Apr;23(2):207-222. doi: 10.1007/s10985-015-9347-7. Epub 2015 Sep 30.
5
Nonparametric analysis of competing risks data with event category missing at random.
Biometrics. 2017 Mar;73(1):104-113. doi: 10.1111/biom.12547. Epub 2016 Jun 8.
6
Nonparametric analysis of bivariate gap time with competing risks.
Biometrics. 2016 Sep;72(3):780-90. doi: 10.1111/biom.12494. Epub 2016 Mar 18.
7
Joint latent class model for longitudinal data and interval-censored semi-competing events: Application to dementia.
Biometrics. 2016 Dec;72(4):1123-1135. doi: 10.1111/biom.12530. Epub 2016 Apr 28.
8
Estimation of the cumulative incidence function under multiple dependent and independent censoring mechanisms.
Lifetime Data Anal. 2018 Apr;24(2):201-223. doi: 10.1007/s10985-017-9393-4. Epub 2017 Feb 25.
9
A regression-based method for estimating mean treatment cost in the presence of right-censoring.
Biostatistics. 2000 Sep;1(3):299-313. doi: 10.1093/biostatistics/1.3.299.
10
Nonparametric Benefit-Risk Assessment Using Marker Process in the Presence of a Terminal Event.
J Am Stat Assoc. 2017;112(518):826-836. doi: 10.1080/01621459.2016.1180988. Epub 2017 Apr 12.

本文引用的文献

1
Analyzing Recurrent Event Data With Informative Censoring.
J Am Stat Assoc. 2001;96(455). doi: 10.1198/016214501753209031.
2
Joint Modeling and Estimation for Recurrent Event Processes and Failure Time Data.
J Am Stat Assoc. 2004 Dec;99(468):1153-1165. doi: 10.1198/016214504000001033.
4
Estimating treatment effects on the marginal recurrent event mean in the presence of a terminating event.
Lifetime Data Anal. 2010 Oct;16(4):451-77. doi: 10.1007/s10985-009-9149-x. Epub 2010 Jan 10.
5
PROPORTIONAL HAZARDS MODELS WITH CONTINUOUS MARKS.
Ann Stat. 2009 Feb 1;37(1):394-426. doi: 10.1214/07-AOS554.
6
Current Methods for Recurrent Events Data with Dependent Termination: A Bayesian Perspective.
J Am Stat Assoc. 2008 Jun 1;103(482):866-878. doi: 10.1198/016214508000000201.
7
Semiparametric transformation models with random effects for joint analysis of recurrent and terminal events.
Biometrics. 2009 Sep;65(3):746-52. doi: 10.1111/j.1541-0420.2008.01126.x. Epub 2008 Sep 29.
8
Semiparametric analysis of correlated recurrent and terminal events.
Biometrics. 2007 Mar;63(1):78-87. doi: 10.1111/j.1541-0420.2006.00677.x.
9
Shared frailty models for recurrent events and a terminal event.
Biometrics. 2004 Sep;60(3):747-56. doi: 10.1111/j.0006-341X.2004.00225.x.
10
Linear regression analysis of censored medical costs.
Biostatistics. 2000 Mar;1(1):35-47. doi: 10.1093/biostatistics/1.1.35.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验