Suppr超能文献

用于息肉状脉络膜血管病变中色素上皮脱离分割的双阶段深度学习框架。

Dual-stage deep learning framework for pigment epithelium detachment segmentation in polypoidal choroidal vasculopathy.

作者信息

Xu Yupeng, Yan Ke, Kim Jinman, Wang Xiuying, Li Changyang, Su Li, Yu Suqin, Xu Xun, Feng Dagan David

机构信息

Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Shanghai Key Laboratory of Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China.

Biomedical and Multimedia Information Technology (BMIT) Research Group, The University of Sydney, Sydney, NSW, 2006, Australia.

出版信息

Biomed Opt Express. 2017 Aug 10;8(9):4061-4076. doi: 10.1364/BOE.8.004061. eCollection 2017 Sep 1.

Abstract

Worldwide, polypoidal choroidal vasculopathy (PCV) is a common vision-threatening exudative maculopathy, and pigment epithelium detachment (PED) is an important clinical characteristic. Thus, precise and efficient PED segmentation is necessary for PCV clinical diagnosis and treatment. We propose a dual-stage learning framework via deep neural networks (DNN) for automated PED segmentation in PCV patients to avoid issues associated with manual PED segmentation (subjectivity, manual segmentation errors, and high time consumption).The optical coherence tomography scans of fifty patients were quantitatively evaluated with different algorithms and clinicians. Dual-stage DNN outperformed existing PED segmentation methods for all segmentation accuracy parameters, including true positive volume fraction (85.74 ± 8.69%), dice similarity coefficient (85.69 ± 8.08%), positive predictive value (86.02 ± 8.99%) and false positive volume fraction (0.38 ± 0.18%). Dual-stage DNN achieves accurate PED quantitative information, works with multiple types of PEDs and agrees well with manual delineation, suggesting that it is a potential automated assistant for PCV management.

摘要

在全球范围内,息肉状脉络膜血管病变(PCV)是一种常见的威胁视力的渗出性黄斑病变,色素上皮脱离(PED)是其重要的临床特征。因此,精确且高效的PED分割对于PCV的临床诊断和治疗至关重要。我们提出了一种通过深度神经网络(DNN)的双阶段学习框架,用于对PCV患者进行自动PED分割,以避免与手动PED分割相关的问题(主观性、手动分割误差和高时间消耗)。对50名患者的光学相干断层扫描图像使用不同算法和临床医生进行了定量评估。双阶段DNN在所有分割准确性参数方面均优于现有的PED分割方法,包括真阳性体积分数(85.74 ± 8.69%)、骰子相似系数(85.69 ± 8.08%)、阳性预测值(86.02 ± 8.99%)和假阳性体积分数(0.38 ± 0.18%)。双阶段DNN能够获得准确的PED定量信息,适用于多种类型的PED,并且与手动描绘结果高度一致,这表明它是PCV管理中一种潜在的自动辅助工具。

相似文献

1
Dual-stage deep learning framework for pigment epithelium detachment segmentation in polypoidal choroidal vasculopathy.
Biomed Opt Express. 2017 Aug 10;8(9):4061-4076. doi: 10.1364/BOE.8.004061. eCollection 2017 Sep 1.
2
Pigment epithelial detachment in polypoidal choroidal vasculopathy.
Am J Ophthalmol. 2007 Jan;143(1):102-111. doi: 10.1016/j.ajo.2006.08.025. Epub 2006 Sep 28.
3
Quantitative Changes in Pigment Epithelial Detachment Area and Volume Predict Retreatment in Polypoidal Choroidal Vasculopathy.
Am J Ophthalmol. 2017 May;177:195-205. doi: 10.1016/j.ajo.2016.12.008. Epub 2016 Dec 20.
5
Sensitivity and specificity of spectral-domain optical coherence tomography in detecting idiopathic polypoidal choroidal vasculopathy.
Am J Ophthalmol. 2014 Dec;158(6):1228-1238.e1. doi: 10.1016/j.ajo.2014.08.025. Epub 2014 Aug 22.
7
Three-Dimensional Features of Polypoidal Choroidal Vasculopathy Observed by Spectral-Domain OCT.
Ophthalmic Surg Lasers Imaging. 2010 Mar 9:1-6. doi: 10.3928/15428877-20100215-76.
9
Photodynamic therapy for polypoidal choroidal vasculopathy.
Prog Retin Eye Res. 2013 Nov;37:182-99. doi: 10.1016/j.preteyeres.2013.09.003. Epub 2013 Oct 15.

引用本文的文献

1
Democratizing Glaucoma Care: A Framework for AI-Driven Progression Prediction Across Diverse Healthcare Settings.
J Ophthalmol. 2025 Mar 11;2025:9803788. doi: 10.1155/joph/9803788. eCollection 2025.
5
Diving Deep into Deep Learning: An Update on Artificial Intelligence in Retina.
Curr Ophthalmol Rep. 2020 Sep;8(3):121-128. doi: 10.1007/s40135-020-00240-2. Epub 2020 Jun 7.
6
Retinal Boundary Segmentation in Stargardt Disease Optical Coherence Tomography Images Using Automated Deep Learning.
Transl Vis Sci Technol. 2020 Oct 13;9(11):12. doi: 10.1167/tvst.9.11.12. eCollection 2020 Oct.
7
Artificial intelligence and deep learning in ophthalmology - present and future (Review).
Exp Ther Med. 2020 Oct;20(4):3469-3473. doi: 10.3892/etm.2020.9118. Epub 2020 Aug 12.
8
Application of machine learning in ophthalmic imaging modalities.
Eye Vis (Lond). 2020 Apr 16;7:22. doi: 10.1186/s40662-020-00183-6. eCollection 2020.
9
Automatic choroidal segmentation in OCT images using supervised deep learning methods.
Sci Rep. 2019 Sep 16;9(1):13298. doi: 10.1038/s41598-019-49816-4.
10
Deriving external forces via convolutional neural networks for biomedical image segmentation.
Biomed Opt Express. 2019 Jul 8;10(8):3800-3814. doi: 10.1364/BOE.10.003800. eCollection 2019 Aug 1.

本文引用的文献

1
ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks.
Biomed Opt Express. 2017 Jul 13;8(8):3627-3642. doi: 10.1364/BOE.8.003627. eCollection 2017 Aug 1.
2
Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search.
Biomed Opt Express. 2017 Apr 27;8(5):2732-2744. doi: 10.1364/BOE.8.002732. eCollection 2017 May 1.
3
Automatic Skin Lesion Segmentation Using Deep Fully Convolutional Networks With Jaccard Distance.
IEEE Trans Med Imaging. 2017 Sep;36(9):1876-1886. doi: 10.1109/TMI.2017.2695227. Epub 2017 Apr 18.
4
MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images.
Comput Methods Programs Biomed. 2017 May;143:67-74. doi: 10.1016/j.cmpb.2017.02.013. Epub 2017 Feb 20.
5
Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs.
Artif Intell Med. 2017 Nov;83:58-66. doi: 10.1016/j.artmed.2017.03.008. Epub 2017 Mar 27.
6
Automatic prostate segmentation on MR images with deep network and graph model.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:635-638. doi: 10.1109/EMBC.2016.7590782.
7
Quantitative Changes in Pigment Epithelial Detachment Area and Volume Predict Retreatment in Polypoidal Choroidal Vasculopathy.
Am J Ophthalmol. 2017 May;177:195-205. doi: 10.1016/j.ajo.2016.12.008. Epub 2016 Dec 20.
8
Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution.
Phys Med Biol. 2016 Dec 21;61(24):8676-8698. doi: 10.1088/1361-6560/61/24/8676. Epub 2016 Nov 23.
9
Segmentation Based Sparse Reconstruction of Optical Coherence Tomography Images.
IEEE Trans Med Imaging. 2017 Feb;36(2):407-421. doi: 10.1109/TMI.2016.2611503. Epub 2016 Sep 20.
10
A Perspective on the Nature and Frequency of Pigment Epithelial Detachments.
Am J Ophthalmol. 2016 Dec;172:13-27. doi: 10.1016/j.ajo.2016.09.004. Epub 2016 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验