Xu Yupeng, Yan Ke, Kim Jinman, Wang Xiuying, Li Changyang, Su Li, Yu Suqin, Xu Xun, Feng Dagan David
Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Shanghai Key Laboratory of Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China.
Biomedical and Multimedia Information Technology (BMIT) Research Group, The University of Sydney, Sydney, NSW, 2006, Australia.
Biomed Opt Express. 2017 Aug 10;8(9):4061-4076. doi: 10.1364/BOE.8.004061. eCollection 2017 Sep 1.
Worldwide, polypoidal choroidal vasculopathy (PCV) is a common vision-threatening exudative maculopathy, and pigment epithelium detachment (PED) is an important clinical characteristic. Thus, precise and efficient PED segmentation is necessary for PCV clinical diagnosis and treatment. We propose a dual-stage learning framework via deep neural networks (DNN) for automated PED segmentation in PCV patients to avoid issues associated with manual PED segmentation (subjectivity, manual segmentation errors, and high time consumption).The optical coherence tomography scans of fifty patients were quantitatively evaluated with different algorithms and clinicians. Dual-stage DNN outperformed existing PED segmentation methods for all segmentation accuracy parameters, including true positive volume fraction (85.74 ± 8.69%), dice similarity coefficient (85.69 ± 8.08%), positive predictive value (86.02 ± 8.99%) and false positive volume fraction (0.38 ± 0.18%). Dual-stage DNN achieves accurate PED quantitative information, works with multiple types of PEDs and agrees well with manual delineation, suggesting that it is a potential automated assistant for PCV management.
在全球范围内,息肉状脉络膜血管病变(PCV)是一种常见的威胁视力的渗出性黄斑病变,色素上皮脱离(PED)是其重要的临床特征。因此,精确且高效的PED分割对于PCV的临床诊断和治疗至关重要。我们提出了一种通过深度神经网络(DNN)的双阶段学习框架,用于对PCV患者进行自动PED分割,以避免与手动PED分割相关的问题(主观性、手动分割误差和高时间消耗)。对50名患者的光学相干断层扫描图像使用不同算法和临床医生进行了定量评估。双阶段DNN在所有分割准确性参数方面均优于现有的PED分割方法,包括真阳性体积分数(85.74 ± 8.69%)、骰子相似系数(85.69 ± 8.08%)、阳性预测值(86.02 ± 8.99%)和假阳性体积分数(0.38 ± 0.18%)。双阶段DNN能够获得准确的PED定量信息,适用于多种类型的PED,并且与手动描绘结果高度一致,这表明它是PCV管理中一种潜在的自动辅助工具。