Suppr超能文献

使用自动化深度学习方法对斯塔加特病光学相干断层扫描图像进行视网膜边界分割。

Retinal Boundary Segmentation in Stargardt Disease Optical Coherence Tomography Images Using Automated Deep Learning.

机构信息

Queensland University of Technology (QUT), Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland, Australia.

Centre for Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Perth, Western Australia, Australia.

出版信息

Transl Vis Sci Technol. 2020 Oct 13;9(11):12. doi: 10.1167/tvst.9.11.12. eCollection 2020 Oct.

Abstract

PURPOSE

To use a deep learning model to develop a fully automated method (fully semantic network and graph search [FS-GS]) of retinal segmentation for optical coherence tomography (OCT) images from patients with Stargardt disease.

METHODS

Eighty-seven manually segmented (ground truth) OCT volume scan sets (5171 B-scans) from 22 patients with Stargardt disease were used for training, validation and testing of a novel retinal boundary detection approach (FS-GS) that combines a fully semantic deep learning segmentation method, which generates a per-pixel class prediction map with a graph-search method to extract retinal boundary positions. The performance was evaluated using the mean absolute boundary error and the differences in two clinical metrics (retinal thickness and volume) compared with the ground truth. The performance of a separate deep learning method and two publicly available software algorithms were also evaluated against the ground truth.

RESULTS

FS-GS showed an excellent agreement with the ground truth, with a boundary mean absolute error of 0.23 and 1.12 pixels for the internal limiting membrane and the base of retinal pigment epithelium or Bruch's membrane, respectively. The mean difference in thickness and volume across the central 6 mm zone were 2.10 µm and 0.059 mm. The performance of the proposed method was more accurate and consistent than the publicly available OCTExplorer and AURA tools.

CONCLUSIONS

The FS-GS method delivers good performance in segmentation of OCT images of pathologic retina in Stargardt disease.

TRANSLATIONAL RELEVANCE

Deep learning models can provide a robust method for retinal segmentation and support a high-throughput analysis pipeline for measuring retinal thickness and volume in Stargardt disease.

摘要

目的

利用深度学习模型开发一种全自动的方法(全语义网络和图搜索[FS-GS])对来自 Stargardt 病患者的光学相干断层扫描(OCT)图像进行视网膜分割。

方法

使用 22 名 Stargardt 病患者的 87 个手动分割(真实)OCT 容积扫描集(5171 个 B 扫描)来训练、验证和测试一种新的视网膜边界检测方法(FS-GS),该方法结合了一种全语义深度学习分割方法,该方法生成逐像素的类预测图,然后使用图搜索方法提取视网膜边界位置。使用平均绝对边界误差和与真实边界相比的两个临床指标(视网膜厚度和体积)的差异来评估性能。还针对真实边界评估了单独的深度学习方法和两种公开可用的软件算法的性能。

结果

FS-GS 与真实边界具有极好的一致性,内界膜和视网膜色素上皮或 Bruch 膜基底的边界平均绝对误差分别为 0.23 和 1.12 像素。中央 6 毫米区域的厚度和体积的平均差异分别为 2.10 µm 和 0.059 mm。与公开可用的 OCTExplorer 和 AURA 工具相比,所提出的方法的性能更准确、更一致。

结论

FS-GS 方法在 Stargardt 病病理性视网膜的 OCT 图像分割中表现出良好的性能。

翻译

汪芳

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa22/7581491/682fb4be8649/tvst-9-11-12-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验