Suppr超能文献

使用深度学习和图搜索对非渗出性年龄相关性黄斑变性患者的光学相干断层扫描(OCT)图像中的九个视网膜层边界进行自动分割。

Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search.

作者信息

Fang Leyuan, Cunefare David, Wang Chong, Guymer Robyn H, Li Shutao, Farsiu Sina

机构信息

Departments of Biomedical Engineering Duke University, Durham, NC 27708, USA.

College of Electrical and Information Engineering, Hunan University, Changsha 410082, China.

出版信息

Biomed Opt Express. 2017 Apr 27;8(5):2732-2744. doi: 10.1364/BOE.8.002732. eCollection 2017 May 1.

Abstract

We present a novel framework combining convolutional neural networks (CNN) and graph search methods (termed as CNN-GS) for the automatic segmentation of nine layer boundaries on retinal optical coherence tomography (OCT) images. CNN-GS first utilizes a CNN to extract features of specific retinal layer boundaries and train a corresponding classifier to delineate a pilot estimate of the eight layers. Next, a graph search method uses the probability maps created from the CNN to find the final boundaries. We validated our proposed method on 60 volumes (2915 B-scans) from 20 human eyes with non-exudative age-related macular degeneration (AMD), which attested to effectiveness of our proposed technique.

摘要

我们提出了一种将卷积神经网络(CNN)和图搜索方法相结合的新颖框架(称为CNN-GS),用于在视网膜光学相干断层扫描(OCT)图像上自动分割九层边界。CNN-GS首先利用CNN提取特定视网膜层边界的特征,并训练相应的分类器来描绘八层的初步估计。接下来,图搜索方法使用从CNN创建的概率图来找到最终边界。我们在来自20只患有非渗出性年龄相关性黄斑变性(AMD)的人眼的60个容积(2915次B扫描)上验证了我们提出的方法,这证明了我们提出的技术的有效性。

相似文献

1
Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search.
Biomed Opt Express. 2017 Apr 27;8(5):2732-2744. doi: 10.1364/BOE.8.002732. eCollection 2017 May 1.
2
Automatic segmentation of OCT retinal boundaries using recurrent neural networks and graph search.
Biomed Opt Express. 2018 Oct 26;9(11):5759-5777. doi: 10.1364/BOE.9.005759. eCollection 2018 Nov 1.
5
Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers.
Biomed Opt Express. 2018 Jun 11;9(7):3049-3066. doi: 10.1364/BOE.9.003049. eCollection 2018 Jul 1.
6
Multiple surface segmentation using convolution neural nets: application to retinal layer segmentation in OCT images.
Biomed Opt Express. 2018 Aug 29;9(9):4509-4526. doi: 10.1364/BOE.9.004509. eCollection 2018 Sep 1.
8
Automatic Classification of Macular Diseases from OCT Images Using CNN Guided with Edge Convolutional Layer.
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3858-3861. doi: 10.1109/EMBC48229.2022.9871322.
9
Deep ensemble learning for automated non-advanced AMD classification using optimized retinal layer segmentation and SD-OCT scans.
Comput Biol Med. 2023 Mar;154:106512. doi: 10.1016/j.compbiomed.2022.106512. Epub 2023 Jan 10.

引用本文的文献

2
Quantitative assessment of nuclei and layers of human skin by deep learning-based OCT image segmentation.
Biomed Opt Express. 2025 Mar 21;16(4):1528-1545. doi: 10.1364/BOE.558675. eCollection 2025 Apr 1.
5
OCT5k: A dataset of multi-disease and multi-graded annotations for retinal layers.
Sci Data. 2025 Feb 14;12(1):267. doi: 10.1038/s41597-024-04259-z.
6
Bibliometric analysis of research on the application of deep learning to ophthalmology.
Quant Imaging Med Surg. 2025 Jan 2;15(1):852-866. doi: 10.21037/qims-24-1340. Epub 2024 Dec 30.
7
Evolutionary patterns and research frontiers of artificial intelligence in age-related macular degeneration: a bibliometric analysis.
Quant Imaging Med Surg. 2025 Jan 2;15(1):813-830. doi: 10.21037/qims-24-1406. Epub 2024 Dec 30.
9
Retinal OCT Layer Segmentation via Joint Motion Correction and Graph-Assisted 3D Neural Network.
IEEE Access. 2023;11:103319-103332. doi: 10.1109/access.2023.3317011. Epub 2023 Sep 18.
10

本文引用的文献

2
Multi-surface segmentation of OCT images with AMD using sparse high order potentials.
Biomed Opt Express. 2016 Dec 16;8(1):281-297. doi: 10.1364/BOE.8.000281. eCollection 2017 Jan 1.
4
Retinal nerve fiber layer thickness in amnestic mild cognitive impairment: Case-control study and meta-analysis.
Alzheimers Dement (Amst). 2016 Aug 19;4:85-93. doi: 10.1016/j.dadm.2016.07.004. eCollection 2016.
5
Segmentation Based Sparse Reconstruction of Optical Coherence Tomography Images.
IEEE Trans Med Imaging. 2017 Feb;36(2):407-421. doi: 10.1109/TMI.2016.2611503. Epub 2016 Sep 20.
7
Learning layer-specific edges for segmenting retinal layers with large deformations.
Biomed Opt Express. 2016 Jun 30;7(7):2888-901. doi: 10.1364/BOE.7.002888. eCollection 2016 Jul 1.
8
Automated volumetric segmentation of retinal fluid on optical coherence tomography.
Biomed Opt Express. 2016 Mar 30;7(4):1577-89. doi: 10.1364/BOE.7.001577. eCollection 2016 Apr 1.
10
DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection.
IEEE Trans Pattern Anal Mach Intell. 2017 Jul;39(7):1320-1334. doi: 10.1109/TPAMI.2016.2587642. Epub 2016 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验