Fang Leyuan, Cunefare David, Wang Chong, Guymer Robyn H, Li Shutao, Farsiu Sina
Departments of Biomedical Engineering Duke University, Durham, NC 27708, USA.
College of Electrical and Information Engineering, Hunan University, Changsha 410082, China.
Biomed Opt Express. 2017 Apr 27;8(5):2732-2744. doi: 10.1364/BOE.8.002732. eCollection 2017 May 1.
We present a novel framework combining convolutional neural networks (CNN) and graph search methods (termed as CNN-GS) for the automatic segmentation of nine layer boundaries on retinal optical coherence tomography (OCT) images. CNN-GS first utilizes a CNN to extract features of specific retinal layer boundaries and train a corresponding classifier to delineate a pilot estimate of the eight layers. Next, a graph search method uses the probability maps created from the CNN to find the final boundaries. We validated our proposed method on 60 volumes (2915 B-scans) from 20 human eyes with non-exudative age-related macular degeneration (AMD), which attested to effectiveness of our proposed technique.
我们提出了一种将卷积神经网络(CNN)和图搜索方法相结合的新颖框架(称为CNN-GS),用于在视网膜光学相干断层扫描(OCT)图像上自动分割九层边界。CNN-GS首先利用CNN提取特定视网膜层边界的特征,并训练相应的分类器来描绘八层的初步估计。接下来,图搜索方法使用从CNN创建的概率图来找到最终边界。我们在来自20只患有非渗出性年龄相关性黄斑变性(AMD)的人眼的60个容积(2915次B扫描)上验证了我们提出的方法,这证明了我们提出的技术的有效性。