Suppr超能文献

困惑与否?:使用双向长短期记忆循环神经网络从脑电图数据中解析大脑活动

Confused or not Confused?: Disentangling Brain Activity from EEG Data Using Bidirectional LSTM Recurrent Neural Networks.

作者信息

Ni Zhaoheng, Yuksel Ahmet Cem, Ni Xiuyan, Mandel Michael I, Xie Lei

机构信息

The Graduate Center, City University of New York, New York, NY 10016, USA.

Brooklyn College, City University of New York, Brooklyn, NY 11210, USA.

出版信息

ACM BCB. 2017 Aug;2017:241-246. doi: 10.1145/3107411.3107513.

Abstract

Brain fog, also known as confusion, is one of the main reasons for low performance in the learning process or any kind of daily task that involves and requires thinking. Detecting confusion in a human's mind in real time is a challenging and important task that can be applied to online education, driver fatigue detection and so on. In this paper, we apply Bidirectional LSTM Recurrent Neural Networks to classify students' confusion in watching online course videos from EEG data. The results show that Bidirectional LSTM model achieves the state-of-the-art performance compared with other machine learning approaches, and shows strong robustness as evaluated by cross-validation. We can predict whether or not a student is confused in the accuracy of 73.3%. Furthermore, we find the most important feature to detecting the brain confusion is the gamma 1 wave of EEG signal. Our results suggest that machine learning is a potentially powerful tool to model and understand brain activity.

摘要

脑雾,也称为思维混乱,是学习过程中或任何涉及并需要思考的日常任务中表现不佳的主要原因之一。实时检测人类大脑中的思维混乱是一项具有挑战性且重要的任务,可应用于在线教育、驾驶员疲劳检测等领域。在本文中,我们应用双向长短期记忆循环神经网络,根据脑电图(EEG)数据对学生观看在线课程视频时的思维混乱情况进行分类。结果表明,与其他机器学习方法相比,双向长短期记忆模型达到了最优性能,并且通过交叉验证评估显示出很强的稳健性。我们能够以73.3%的准确率预测学生是否处于思维混乱状态。此外,我们发现检测大脑思维混乱最重要的特征是EEG信号的伽马1波。我们的结果表明,机器学习是建模和理解大脑活动的潜在强大工具。

相似文献

4
ANN-LSTM: A deep learning model for early student performance prediction in MOOC.
Heliyon. 2023 Apr 7;9(4):e15382. doi: 10.1016/j.heliyon.2023.e15382. eCollection 2023 Apr.
5
Prediction of Cognitive Load from Electroencephalography Signals Using Long Short-Term Memory Network.
Bioengineering (Basel). 2023 Mar 15;10(3):361. doi: 10.3390/bioengineering10030361.
6
Decoding of finger trajectory from ECoG using deep learning.
J Neural Eng. 2018 Jun;15(3):036009. doi: 10.1088/1741-2552/aa9dbe. Epub 2017 Nov 28.
7
Entity recognition from clinical texts via recurrent neural network.
BMC Med Inform Decis Mak. 2017 Jul 5;17(Suppl 2):67. doi: 10.1186/s12911-017-0468-7.
8
Confusion State Induction and EEG-based Detection in Learning.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:3290-3293. doi: 10.1109/EMBC.2018.8512943.
9
Recurrent neural networks with specialized word embeddings for health-domain named-entity recognition.
J Biomed Inform. 2017 Dec;76:102-109. doi: 10.1016/j.jbi.2017.11.007. Epub 2017 Nov 13.
10
A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals.
Comput Biol Med. 2018 Aug 1;99:24-37. doi: 10.1016/j.compbiomed.2018.05.019. Epub 2018 May 17.

引用本文的文献

1
Role of convolutional features and machine learning for predicting student academic performance from MOODLE data.
PLoS One. 2023 Nov 8;18(11):e0293061. doi: 10.1371/journal.pone.0293061. eCollection 2023.
2
Comparative Study on Distributed Lightweight Deep Learning Models for Road Pothole Detection.
Sensors (Basel). 2023 Apr 27;23(9):4347. doi: 10.3390/s23094347.
3
A systematic comparison of deep learning methods for EEG time series analysis.
Front Neuroinform. 2023 Feb 23;17:1067095. doi: 10.3389/fninf.2023.1067095. eCollection 2023.
5
CNN Architectures and Feature Extraction Methods for EEG Imaginary Speech Recognition.
Sensors (Basel). 2022 Jun 21;22(13):4679. doi: 10.3390/s22134679.
6
Vowel speech recognition from rat electroencephalography using long short-term memory neural network.
PLoS One. 2022 Jun 23;17(6):e0270405. doi: 10.1371/journal.pone.0270405. eCollection 2022.
7
Review on EEG-Based Authentication Technology.
Comput Intell Neurosci. 2021 Dec 24;2021:5229576. doi: 10.1155/2021/5229576. eCollection 2021.
10
Detecting abnormal electroencephalograms using deep convolutional networks.
Clin Neurophysiol. 2019 Jan;130(1):77-84. doi: 10.1016/j.clinph.2018.10.012. Epub 2018 Nov 17.

本文引用的文献

1
Brain "fog," inflammation and obesity: key aspects of neuropsychiatric disorders improved by luteolin.
Front Neurosci. 2015 Jul 3;9:225. doi: 10.3389/fnins.2015.00225. eCollection 2015.
2
Recurrent neural network-based approach for early recognition of Alzheimer's disease in EEG.
Clin Neurophysiol. 2001 Aug;112(8):1378-87. doi: 10.1016/s1388-2457(01)00579-x.
3
Long short-term memory.
Neural Comput. 1997 Nov 15;9(8):1735-80. doi: 10.1162/neco.1997.9.8.1735.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验