Suppr超能文献

CNN 架构和 EEG 想象语音识别的特征提取方法。

CNN Architectures and Feature Extraction Methods for EEG Imaginary Speech Recognition.

机构信息

Department of Applied Electronics and Information Engineering, Faculty of Electronics, Telecommunications and Information Technology, Polytechnic University of Bucharest, 060042 Bucharest, Romania.

出版信息

Sensors (Basel). 2022 Jun 21;22(13):4679. doi: 10.3390/s22134679.

Abstract

Speech is a complex mechanism allowing us to communicate our needs, desires and thoughts. In some cases of neural dysfunctions, this ability is highly affected, which makes everyday life activities that require communication a challenge. This paper studies different parameters of an intelligent imaginary speech recognition system to obtain the best performance according to the developed method that can be applied to a low-cost system with limited resources. In developing the system, we used signals from the Kara One database containing recordings acquired for seven phonemes and four words. We used in the feature extraction stage a method based on covariance in the frequency domain that performed better compared to the other time-domain methods. Further, we observed the system performance when using different window lengths for the input signal (0.25 s, 0.5 s and 1 s) to highlight the importance of the short-term analysis of the signals for imaginary speech. The final goal being the development of a low-cost system, we studied several architectures of convolutional neural networks (CNN) and showed that a more complex architecture does not necessarily lead to better results. Our study was conducted on eight different subjects, and it is meant to be a subject's shared system. The best performance reported in this paper is up to 37% accuracy for all 11 different phonemes and words when using cross-covariance computed over the signal spectrum of a 0.25 s window and a CNN containing two convolutional layers with 64 and 128 filters connected to a dense layer with 64 neurons. The final system qualifies as a low-cost system using limited resources for decision-making and having a running time of 1.8 ms tested on an AMD Ryzen 7 4800HS CPU.

摘要

言语是一种复杂的机制,使我们能够交流我们的需求、愿望和想法。在某些神经功能障碍的情况下,这种能力会受到很大影响,这使得需要交流的日常生活活动成为一种挑战。本文研究了智能想象语音识别系统的不同参数,以根据所开发的方法获得最佳性能,该方法可以应用于具有有限资源的低成本系统。在开发系统时,我们使用了来自 Kara One 数据库的信号,该数据库包含为七个音素和四个单词录制的录音。我们在特征提取阶段使用了基于频域协方差的方法,与其他时域方法相比,该方法表现更好。此外,我们观察了在为输入信号使用不同窗口长度(0.25 s、0.5 s 和 1 s)时系统的性能,以突出信号的短期分析对于想象语音的重要性。最终目标是开发一个低成本系统,我们研究了几种卷积神经网络(CNN)的架构,并表明更复杂的架构不一定会带来更好的结果。我们的研究是在八个不同的受试者上进行的,旨在开发一个受试者共享的系统。本文报道的最佳性能是在使用 0.25 s 窗口的信号频谱上计算的交叉协方差和包含两层卷积层的 CNN 时,对于所有 11 个不同的音素和单词,准确率高达 37%,其中卷积层包含 64 和 128 个滤波器,连接到一个包含 64 个神经元的密集层。最终系统被认为是一个使用有限资源进行决策的低成本系统,运行时间为 1.8 ms,在 AMD Ryzen 7 4800HS CPU 上进行了测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71eb/9268757/a5080d11c66d/sensors-22-04679-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验