Suppr超能文献

利用完整质量蛋白质组学和全球 PTM 发现数据库阐明大肠杆菌蛋白质异构体家族。

Elucidating Escherichia coli Proteoform Families Using Intact-Mass Proteomics and a Global PTM Discovery Database.

机构信息

Department of Chemistry, University of Wisconsin , 1101 University Avenue, Madison, Wisconsin 53706, United States.

Genome Center of Wisconsin, University of Wisconsin , 425G Henry Mall, Room 3420, Madison, Wisconsin 53706, United States.

出版信息

J Proteome Res. 2017 Nov 3;16(11):4156-4165. doi: 10.1021/acs.jproteome.7b00516.

Abstract

A proteoform family is a group of related molecular forms of a protein (proteoforms) derived from the same gene. We have previously described a strategy to identify proteoforms and elucidate proteoform families in complex mixtures of intact proteins. The strategy is based upon measurements of two properties for each proteoform: (i) the accurate proteoform intact-mass, measured by liquid chromatography/mass spectrometry (LC-MS), and (ii) the number of lysine residues in each proteoform, determined using an isotopic labeling approach. These measured properties are then compared with those extracted from a catalog of theoretical proteoforms containing protein sequences and localized post-translational modifications (PTMs) for the organism under study. A match between the measured properties and those in the catalog constitutes an identification of the proteoform. In the present study, this strategy is extended by utilizing a global PTM discovery database and is applied to the widely studied model organism Escherichia coli, providing the most comprehensive elucidation of E. coli proteoforms and proteoform families to date.

摘要

蛋白形式家族是指从同一基因衍生而来的一组相关的蛋白质分子形式(蛋白形式)。我们之前描述了一种策略,用于在完整蛋白质的复杂混合物中鉴定蛋白形式和阐明蛋白形式家族。该策略基于对每个蛋白形式的两个特性进行测量:(i)通过液相色谱/质谱(LC-MS)测量的准确蛋白形式完整质量,以及(ii)使用同位素标记方法确定的每个蛋白形式中的赖氨酸残基数。然后将这些测量的特性与从包含研究生物体内的蛋白质序列和局部化翻译后修饰(PTM)的理论蛋白形式目录中提取的特性进行比较。测量的特性与目录中的特性相匹配构成了对蛋白形式的鉴定。在本研究中,通过利用全局 PTM 发现数据库扩展了该策略,并将其应用于广泛研究的模式生物大肠杆菌,提供了迄今为止最全面的大肠杆菌蛋白形式和蛋白形式家族的阐明。

相似文献

1
Elucidating Escherichia coli Proteoform Families Using Intact-Mass Proteomics and a Global PTM Discovery Database.
J Proteome Res. 2017 Nov 3;16(11):4156-4165. doi: 10.1021/acs.jproteome.7b00516.
2
Elucidating Proteoform Families from Proteoform Intact-Mass and Lysine-Count Measurements.
J Proteome Res. 2016 Apr 1;15(4):1213-21. doi: 10.1021/acs.jproteome.5b01090. Epub 2016 Mar 16.
4
Cysteine Counting via Isotopic Chemical Labeling for Intact Mass Proteoform Identifications in Tissue.
Anal Chem. 2023 Oct 17;95(41):15245-15253. doi: 10.1021/acs.analchem.3c02473. Epub 2023 Oct 4.
5
Characterization of Proteoforms with Unknown Post-translational Modifications Using the MIScore.
J Proteome Res. 2016 Aug 5;15(8):2422-32. doi: 10.1021/acs.jproteome.5b01098. Epub 2016 Jul 1.
6
Capillary Zone Electrophoresis-Tandem Mass Spectrometry with Activated Ion Electron Transfer Dissociation for Large-scale Top-down Proteomics.
J Am Soc Mass Spectrom. 2019 Dec;30(12):2470-2479. doi: 10.1007/s13361-019-02206-6. Epub 2019 May 9.
7
Proteoform Analysis and Construction of Proteoform Families in Proteoform Suite.
Methods Mol Biol. 2022;2500:67-81. doi: 10.1007/978-1-0716-2325-1_7.
8
Intact-Mass Analysis Facilitating the Identification of Large Human Heart Proteoforms.
Anal Chem. 2019 Sep 3;91(17):10937-10942. doi: 10.1021/acs.analchem.9b02343. Epub 2019 Aug 14.
9
Proteoform Suite: Software for Constructing, Quantifying, and Visualizing Proteoform Families.
J Proteome Res. 2018 Jan 5;17(1):568-578. doi: 10.1021/acs.jproteome.7b00685. Epub 2017 Dec 15.
10
Improving Proteoform Identifications in Complex Systems Through Integration of Bottom-Up and Top-Down Data.
J Proteome Res. 2020 Aug 7;19(8):3510-3517. doi: 10.1021/acs.jproteome.0c00332. Epub 2020 Jul 10.

引用本文的文献

1
Intact Mass Proteomics Using a Proteoform Atlas.
J Proteome Res. 2025 Jan 3;24(1):323-332. doi: 10.1021/acs.jproteome.4c00838. Epub 2024 Dec 11.
2
Top-down proteomics.
Nat Rev Methods Primers. 2024;4(1). doi: 10.1038/s43586-024-00318-2. Epub 2024 Jun 13.
3
Spectral averaging with outlier rejection algorithms to increase identifications in top-down proteomics.
Proteomics. 2024 Apr;24(8):e2300234. doi: 10.1002/pmic.202300234. Epub 2024 Mar 15.
4
Cysteine Counting via Isotopic Chemical Labeling for Intact Mass Proteoform Identifications in Tissue.
Anal Chem. 2023 Oct 17;95(41):15245-15253. doi: 10.1021/acs.analchem.3c02473. Epub 2023 Oct 4.
5
Revealing Corynebacterium glutamicum proteoforms through top-down proteomics.
Sci Rep. 2023 Feb 14;13(1):2602. doi: 10.1038/s41598-023-29857-6.
6
A Hybrid Spectral Library and Protein Sequence Database Search Strategy for Bottom-Up and Top-Down Proteomic Data Analysis.
J Proteome Res. 2022 Nov 4;21(11):2609-2618. doi: 10.1021/acs.jproteome.2c00305. Epub 2022 Oct 7.
7
Proteoform Analysis and Construction of Proteoform Families in Proteoform Suite.
Methods Mol Biol. 2022;2500:67-81. doi: 10.1007/978-1-0716-2325-1_7.
8
Proteoforms and Proteoform Families: Past, Present, and Future.
Methods Mol Biol. 2022;2500:1-4. doi: 10.1007/978-1-0716-2325-1_1.
9
Recent advances (2019-2021) of capillary electrophoresis-mass spectrometry for multilevel proteomics.
Mass Spectrom Rev. 2023 Mar;42(2):617-642. doi: 10.1002/mas.21714. Epub 2021 Jun 15.
10
Mesh Fragmentation Improves Dissociation Efficiency in Top-down Proteomics.
J Am Soc Mass Spectrom. 2021 Jun 2;32(6):1319-1325. doi: 10.1021/jasms.0c00462. Epub 2021 Mar 23.

本文引用的文献

1
Large-scale analysis of post-translational modifications in E. coli under glucose-limiting conditions.
BMC Genomics. 2017 Apr 17;18(1):301. doi: 10.1186/s12864-017-3676-8.
3
Global Post-Translational Modification Discovery.
J Proteome Res. 2017 Apr 7;16(4):1383-1390. doi: 10.1021/acs.jproteome.6b00034. Epub 2017 Mar 1.
4
Mass Spectrometry of Intact Proteins Reveals +98 u Chemical Artifacts Following Precipitation in Acetone.
J Proteome Res. 2017 Feb 3;16(2):889-897. doi: 10.1021/acs.jproteome.6b00841. Epub 2017 Jan 26.
5
Proteogenomics: Integrating Next-Generation Sequencing and Mass Spectrometry to Characterize Human Proteomic Variation.
Annu Rev Anal Chem (Palo Alto Calif). 2016 Jun 12;9(1):521-45. doi: 10.1146/annurev-anchem-071015-041722. Epub 2016 Mar 30.
6
Elucidating Proteoform Families from Proteoform Intact-Mass and Lysine-Count Measurements.
J Proteome Res. 2016 Apr 1;15(4):1213-21. doi: 10.1021/acs.jproteome.5b01090. Epub 2016 Mar 16.
8
The quantitative and condition-dependent Escherichia coli proteome.
Nat Biotechnol. 2016 Jan;34(1):104-10. doi: 10.1038/nbt.3418. Epub 2015 Dec 7.
9
Enhanced Dissociation of Intact Proteins with High Capacity Electron Transfer Dissociation.
J Am Soc Mass Spectrom. 2016 Mar;27(3):520-31. doi: 10.1007/s13361-015-1306-8. Epub 2015 Nov 20.
10
Characterization of the E. coli proteome and its modifications during growth and ethanol stress.
Front Microbiol. 2015 Feb 18;6:103. doi: 10.3389/fmicb.2015.00103. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验