Suppr超能文献

从时间序列自回归分析得出的描述性指标的置信限估计:方法及在心率变异性中的应用

Estimation of confidence limits for descriptive indexes derived from autoregressive analysis of time series: Methods and application to heart rate variability.

作者信息

Beda Alessandro, Simpson David M, Faes Luca

机构信息

Department of Electronic Engineering and the Postgraduate Program of Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil.

Institute of Sound and Vibration Research, University of Southampton, Southampton, United Kingdom.

出版信息

PLoS One. 2017 Oct 2;12(10):e0183230. doi: 10.1371/journal.pone.0183230. eCollection 2017.

Abstract

The growing interest in personalized medicine requires making inferences from descriptive indexes estimated from individual recordings of physiological signals, with statistical analyses focused on individual differences between/within subjects, rather than comparing supposedly homogeneous cohorts. To this end, methods to compute confidence limits of individual estimates of descriptive indexes are needed. This study introduces numerical methods to compute such confidence limits and perform statistical comparisons between indexes derived from autoregressive (AR) modeling of individual time series. Analytical approaches are generally not viable, because the indexes are usually nonlinear functions of the AR parameters. We exploit Monte Carlo (MC) and Bootstrap (BS) methods to reproduce the sampling distribution of the AR parameters and indexes computed from them. Here, these methods are implemented for spectral and information-theoretic indexes of heart-rate variability (HRV) estimated from AR models of heart-period time series. First, the MS and BC methods are tested in a wide range of synthetic HRV time series, showing good agreement with a gold-standard approach (i.e. multiple realizations of the "true" process driving the simulation). Then, real HRV time series measured from volunteers performing cognitive tasks are considered, documenting (i) the strong variability of confidence limits' width across recordings, (ii) the diversity of individual responses to the same task, and (iii) frequent disagreement between the cohort-average response and that of many individuals. We conclude that MC and BS methods are robust in estimating confidence limits of these AR-based indexes and thus recommended for short-term HRV analysis. Moreover, the strong inter-individual differences in the response to tasks shown by AR-based indexes evidence the need of individual-by-individual assessments of HRV features. Given their generality, MC and BS methods are promising for applications in biomedical signal processing and beyond, providing a powerful new tool for assessing the confidence limits of indexes estimated from individual recordings.

摘要

对个性化医疗日益增长的兴趣要求从根据生理信号的个体记录估计的描述性指标中进行推断,统计分析聚焦于个体之间/个体内部的差异,而非比较假定为同质的队列。为此,需要计算描述性指标个体估计值置信区间的方法。本研究介绍了计算此类置信区间并对源自个体时间序列自回归(AR)建模的指标进行统计比较的数值方法。解析方法通常不可行,因为这些指标通常是AR参数的非线性函数。我们利用蒙特卡罗(MC)和自助法(BS)来重现AR参数及其计算所得指标的抽样分布。在此,这些方法应用于根据心动周期时间序列的AR模型估计的心率变异性(HRV)的频谱和信息理论指标。首先,在广泛的合成HRV时间序列中测试了MS和BC方法,结果显示与一种金标准方法(即驱动模拟的“真实”过程的多次实现)具有良好的一致性。然后,考虑了从执行认知任务的志愿者身上测量的真实HRV时间序列,记录了(i)各记录间置信区间宽度的强烈变异性,(ii)个体对同一任务反应的多样性,以及(iii)队列平均反应与许多个体反应之间频繁的不一致性。我们得出结论,MC和BS方法在估计这些基于AR的指标的置信区间方面是稳健的,因此推荐用于短期HRV分析。此外,基于AR的指标所显示的个体对任务反应的强烈个体间差异证明了对HRV特征进行逐个个体评估的必要性。鉴于其通用性,MC和BS方法在生物医学信号处理及其他领域的应用前景广阔,为评估从个体记录估计得到的指标的置信区间提供了一个强大的新工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfb6/5624578/1211c738ee39/pone.0183230.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验