Zhang Luhui, Sun Xinpei, Ye Jianwen, Yuan QianQian, Zhang Xin, Sun Fei, An Yongpan, Chen Yutong, Qian Yuehui, Yang Daqian, Wang Qian, Gao Miaomiao, Chen Tao, Ma Hongwu, Chen Guoqiang, Xie Zhengwei
Peking University International Cancer Institute, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
Peking University - Yunnan Baiyao International Medical Center, School of Pharmaceutical Science, Peking University, Beijing, 100191, China.
Metab Eng Commun. 2024 Nov 19;19:e00251. doi: 10.1016/j.mec.2024.e00251. eCollection 2024 Dec.
In pursuit of reliable and efficient industrial microbes, this study integrates cutting-edge systems biology tools with TD01, a robust halophilic bacterium. We generated the complete and annotated circular genome sequence for this model organism, constructed and meticulously curated a genome-scale metabolic network, achieving striking 86.32% agreement with Biolog Phenotype Microarray data and visualize the network via an interactive Electron/Thrift server architecture. We then analyzed the genome-scale network using vertex sampling analysis (VSA) and found that productions of biomass, polyhydroxyalkanoates (PHA), citrate, acetate, and pyruvate are mutually competing. Recognizing the dynamic nature of TD01, we further developed and implemented the hyper-cube-shrink-analysis (HCSA) framework to predict effects of nutrient availabilities and metabolic reactions in the model on biomass and PHA accumulation. We then, based on the analysis results, proposed and validate multi-step feeding strategies tailored to different fermentation stages. This integrated approach yielded remarkable results, with fermentation culminating in a cell dry weight of 100.4 g/L and 70% PHA content, surpassing previous benchmarks. Our findings exemplify the powerful potential of system-level tools in the design and optimization of industrial microorganisms, paving the way for more efficient and sustainable bio-based processes.
为了寻找可靠且高效的工业微生物,本研究将前沿的系统生物学工具与健壮的嗜盐细菌TD01相结合。我们为这种模式生物生成了完整且经过注释的环状基因组序列,构建并精心整理了一个基因组规模的代谢网络,该网络与Biolog表型微阵列数据的一致性达到了惊人的86.32%,并通过交互式电子/Thrift服务器架构对该网络进行可视化。然后,我们使用顶点采样分析(VSA)对基因组规模的网络进行分析,发现生物量、聚羟基脂肪酸酯(PHA)、柠檬酸盐、乙酸盐和丙酮酸的生成相互竞争。认识到TD01的动态特性,我们进一步开发并实施了超立方体收缩分析(HCSA)框架,以预测模型中营养物质可用性和代谢反应对生物量和PHA积累的影响。然后,基于分析结果,我们提出并验证了针对不同发酵阶段的多步补料策略。这种综合方法产生了显著的结果,发酵最终细胞干重达到100.4 g/L,PHA含量达到70%,超过了之前的基准。我们的研究结果例证了系统级工具在工业微生物设计和优化中的强大潜力,为更高效、可持续的生物基工艺铺平了道路。