Suppr超能文献

一种基于量子场对信息环境表征的自适应决策模型。

A model of adaptive decision-making from representation of information environment by quantum fields.

作者信息

Bagarello F, Haven E, Khrennikov A

机构信息

DEIM, Facoltà di Ingegneria, Università di Palermo, 90128 Palermo, Italy

INFN, Sezione di Napoli, Naples, Italy.

出版信息

Philos Trans A Math Phys Eng Sci. 2017 Nov 13;375(2106). doi: 10.1098/rsta.2017.0162.

Abstract

We present the mathematical model of decision-making (DM) of agents acting in a complex and uncertain environment (combining huge variety of economical, financial, behavioural and geopolitical factors). To describe interaction of agents with it, we apply the formalism of quantum field theory (QTF). Quantum fields are a purely informational nature. The QFT model can be treated as a far relative of the expected utility theory, where the role of utility is played by adaptivity to an environment (bath). However, this sort of utility-adaptivity cannot be represented simply as a numerical function. The operator representation in Hilbert space is used and adaptivity is described as in quantum dynamics. We are especially interested in stabilization of solutions for sufficiently large time. The outputs of this stabilization process, probabilities for possible choices, are treated in the framework of classical DM. To connect classical and quantum DM, we appeal to Quantum Bayesianism. We demonstrate the quantum-like interference effect in DM, which is exhibited as a violation of the formula of total probability, and hence the classical Bayesian inference scheme.This article is part of the themed issue 'Second quantum revolution: foundational questions'.

摘要

我们提出了在复杂且不确定的环境(结合了各种各样的经济、金融、行为和地缘政治因素)中行动的主体的决策数学模型。为了描述主体与该环境的相互作用,我们应用了量子场论(QTF)的形式体系。量子场具有纯粹的信息性质。量子场论模型可被视为预期效用理论的远亲,其中效用的角色由对环境(热库)的适应性来扮演。然而,这种效用适应性不能简单地表示为一个数值函数。我们使用希尔伯特空间中的算符表示,并像在量子动力学中那样描述适应性。我们特别关注足够长的时间内解的稳定性。这个稳定过程的输出,即可能选择的概率,是在经典决策框架内处理的。为了将经典决策和量子决策联系起来,我们诉诸量子贝叶斯主义。我们展示了决策中类似量子的干涉效应,它表现为对全概率公式的违反,从而也违反了经典贝叶斯推理方案。本文是主题为“第二次量子革命:基础问题”的特刊的一部分。

相似文献

1
A model of adaptive decision-making from representation of information environment by quantum fields.
Philos Trans A Math Phys Eng Sci. 2017 Nov 13;375(2106). doi: 10.1098/rsta.2017.0162.
2
Quantum Bayesian perspective for intelligence reservoir characterization, monitoring and management.
Philos Trans A Math Phys Eng Sci. 2017 Nov 13;375(2106). doi: 10.1098/rsta.2016.0398.
3
Quantum-like influence diagrams for decision-making.
Neural Netw. 2020 Dec;132:190-210. doi: 10.1016/j.neunet.2020.07.009. Epub 2020 Jul 16.
4
Quantum generalized observables framework for psychological data: a case of preference reversals in US elections.
Philos Trans A Math Phys Eng Sci. 2017 Nov 13;375(2106). doi: 10.1098/rsta.2016.0391.
6
What is Quantum in probabilistic explanations of the sure-thing principle violation?
Biosystems. 2024 Apr;238:105180. doi: 10.1016/j.biosystems.2024.105180. Epub 2024 Mar 11.
7
Psychological 'double-slit experiment' in decision making: Quantum versus classical.
Biosystems. 2020 Jul;195:104171. doi: 10.1016/j.biosystems.2020.104171. Epub 2020 May 30.
8
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
9
A Unified Theory of Human Judgements and Decision-Making under Uncertainty.
Entropy (Basel). 2020 Jul 3;22(7):738. doi: 10.3390/e22070738.
10
Quantum Bayesianism as the basis of general theory of decision-making.
Philos Trans A Math Phys Eng Sci. 2016 May 28;374(2068). doi: 10.1098/rsta.2015.0245.

引用本文的文献

1
A quantum-like cognitive approach to modeling human biased selection behavior.
Sci Rep. 2022 Dec 29;12(1):22545. doi: 10.1038/s41598-022-13757-2.
2
Modeling epidemics through ladder operators.
Chaos Solitons Fractals. 2020 Nov;140:110193. doi: 10.1016/j.chaos.2020.110193. Epub 2020 Oct 7.
3
Non-Hermitian Operator Modelling of Basic Cancer Cell Dynamics.
Entropy (Basel). 2018 Apr 11;20(4):270. doi: 10.3390/e20040270.

本文引用的文献

1
From anomalies to forecasts: Toward a descriptive model of decisions under risk, under ambiguity, and from experience.
Psychol Rev. 2017 Jul;124(4):369-409. doi: 10.1037/rev0000062. Epub 2017 Mar 9.
2
Commentary: Extensional Versus Intuitive Reasoning: The Conjunction Fallacy in Probability Judgment.
Front Psychol. 2015 Nov 25;6:1832. doi: 10.3389/fpsyg.2015.01832. eCollection 2015.
3
Instability of political preferences and the role of mass media: a dynamical representation in a quantum framework.
Philos Trans A Math Phys Eng Sci. 2016 Jan 13;374(2058). doi: 10.1098/rsta.2015.0106.
4
On selective influences, marginal selectivity, and bell/CHSH inequalities.
Top Cogn Sci. 2014 Jan;6(1):121-8. doi: 10.1111/tops.12060. Epub 2013 Nov 21.
5
Quantum-like model for the adaptive dynamics of the genetic regulation of E. coli's metabolism of glucose/lactose.
Syst Synth Biol. 2012 Jun;6(1-2):1-7. doi: 10.1007/s11693-012-9091-1. Epub 2012 Apr 11.
6
Can quantum probability provide a new direction for cognitive modeling?
Behav Brain Sci. 2013 Jun;36(3):255-74. doi: 10.1017/S0140525X12001525.
7
Quantum-like model of behavioral response computation using neural oscillators.
Biosystems. 2012 Dec;110(3):171-82. doi: 10.1016/j.biosystems.2012.10.002. Epub 2012 Nov 3.
8
A quantum probability model of causal reasoning.
Front Psychol. 2012 May 14;3:138. doi: 10.3389/fpsyg.2012.00138. eCollection 2012.
9
Quantum-like model of brain's functioning: decision making from decoherence.
J Theor Biol. 2011 Jul 21;281(1):56-64. doi: 10.1016/j.jtbi.2011.04.022. Epub 2011 May 7.
10
A quantum theoretical explanation for probability judgment errors.
Psychol Rev. 2011 Apr;118(2):193-218. doi: 10.1037/a0022542.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验