Suppr超能文献

不确定性下人类判断与决策的统一理论

A Unified Theory of Human Judgements and Decision-Making under Uncertainty.

作者信息

Pisano Raffaele, Sozzo Sandro

机构信息

Institute of Electronics, Microelectronics and Nanotechnology (IEMN), Lille University, Avenue Poincaré CS 60069, CEDEX, 59652 Villeneuve d'Ascq, France.

School of Business and Centre for Quantum Social and Cognitive Science (IQSCS), University of Leicester, University Road, Leicester LE1 7RH, UK.

出版信息

Entropy (Basel). 2020 Jul 3;22(7):738. doi: 10.3390/e22070738.

Abstract

Growing empirical evidence reveals that traditional set-theoretic structures cannot in general be applied to cognitive phenomena. This has raised several problems, as illustrated, for example, by probability judgement errors and decision-making (DM) errors. We propose here a unified theoretical perspective which applies the mathematical formalism of quantum theory in Hilbert space to cognitive domains. In this perspective, judgements and decisions are described as intrinsically non-deterministic processes which involve a contextual interaction between a conceptual entity and the cognitive context surrounding it. When a given phenomenon is considered, the quantum-theoretic framework identifies entities, states, contexts, properties and outcome statistics, and applies the mathematical formalism of quantum theory to model the considered phenomenon. We explain how the quantum-theoretic framework works in a variety of judgement and decision situations where systematic and significant deviations from classicality occur.

摘要

越来越多的实证证据表明,传统的集合论结构通常不能应用于认知现象。这引发了几个问题,例如概率判断错误和决策(DM)错误所表明的那样。我们在此提出一种统一的理论观点,即将希尔伯特空间中量子理论的数学形式应用于认知领域。从这个角度来看,判断和决策被描述为本质上非确定性的过程,涉及概念实体与其周围认知背景之间的情境交互。当考虑给定现象时,量子理论框架识别实体、状态、背景、属性和结果统计,并应用量子理论的数学形式对所考虑的现象进行建模。我们解释了量子理论框架在各种判断和决策情境中是如何运作的,在这些情境中会出现与经典情况的系统性和显著偏差。

相似文献

2
Generalizing Prototype Theory: A Formal Quantum Framework.泛化原型理论:一个形式化量子框架。
Front Psychol. 2016 Mar 30;7:418. doi: 10.3389/fpsyg.2016.00418. eCollection 2016.
3
Quantum Cognition.量子认知。
Annu Rev Psychol. 2022 Jan 4;73:749-778. doi: 10.1146/annurev-psych-033020-123501. Epub 2021 Sep 21.
4
Zeno's paradox in decision-making.决策中的芝诺悖论。
Proc Biol Sci. 2016 Apr 13;283(1828). doi: 10.1098/rspb.2016.0291.
6
Compatible quantum theory.相容量子论。
Rep Prog Phys. 2014 Sep;77(9):092001. doi: 10.1088/0034-4885/77/9/092001. Epub 2014 Aug 22.
8
Conditions for quantum interference in cognitive sciences.认知科学中的量子干涉条件。
Top Cogn Sci. 2014 Jan;6(1):79-90. doi: 10.1111/tops.12065. Epub 2013 Nov 21.
9
Contextual measurement model and quantum theory.情境测量模型与量子理论。
R Soc Open Sci. 2024 Mar 20;11(3):231953. doi: 10.1098/rsos.231953. eCollection 2024 Mar.

本文引用的文献

1
Invariants in probabilistic reasoning.概率推理中的不变量。
Cogn Psychol. 2018 Feb;100:1-16. doi: 10.1016/j.cogpsych.2017.11.003. Epub 2017 Dec 6.
3
Quantum structure of negation and conjunction in human thought.人类思维中否定与合取的量子结构。
Front Psychol. 2015 Sep 30;6:1447. doi: 10.3389/fpsyg.2015.01447. eCollection 2015.
5
Quantum structure and human thought.量子结构与人类思维。
Behav Brain Sci. 2013 Jun;36(3):274-6. doi: 10.1017/S0140525X12002841.
7
Heuristics made easy: an effort-reduction framework.启发式方法简化:一个减少努力的框架。
Psychol Bull. 2008 Mar;134(2):207-22. doi: 10.1037/0033-2909.134.2.207.
8
Judgment under Uncertainty: Heuristics and Biases.《不确定性下的判断:启发式与偏差》
Science. 1974 Sep 27;185(4157):1124-31. doi: 10.1126/science.185.4157.1124.
10
The Disjunction Effect: Does It Exist for Two-Step Gambles?析取效应:两步赌博中是否存在?
Organ Behav Hum Decis Process. 2001 Jul;85(2):250-264. doi: 10.1006/obhd.2000.2942.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验