Giansante Carlo, Infante Ivan
Dipartimento di Matematica e Fisica 'E. De Giorgi', Università del Salento , via per Arnesano, 73100 Lecce, Italy.
NANOTEC-CNR Istituto di Nanotecnologia, via per Arnesano, 73100 Lecce, Italy.
J Phys Chem Lett. 2017 Oct 19;8(20):5209-5215. doi: 10.1021/acs.jpclett.7b02193. Epub 2017 Oct 10.
Surface traps are ubiquitous to nanoscopic semiconductor materials. Understanding their atomistic origin and manipulating them chemically have capital importance to design defect-free colloidal quantum dots and make a leap forward in the development of efficient optoelectronic devices. Recent advances in computing power established computational chemistry as a powerful tool to describe accurately complex chemical species and nowadays it became conceivable to model colloidal quantum dots with realistic sizes and shapes. In this Perspective, we combine the knowledge gathered in recent experimental findings with the computation of quantum dot electronic structures. We analyze three different systems: namely, CdSe, PbS, and CsPbI as benchmark semiconductor nanocrystals showing how different types of trap states can form at their surface. In addition, we suggest experimental healing of such traps according to their chemical origin and nanocrystal composition.
表面陷阱在纳米半导体材料中普遍存在。了解其原子起源并进行化学操控对于设计无缺陷的胶体量子点以及在高效光电器件的发展上取得飞跃至关重要。计算能力的最新进展使计算化学成为准确描述复杂化学物种的强大工具,如今对具有实际尺寸和形状的胶体量子点进行建模已成为可能。在这篇综述中,我们将近期实验发现所积累的知识与量子点电子结构的计算相结合。我们分析了三种不同的体系:即作为基准半导体纳米晶体的CdSe、PbS和CsPbI,展示了不同类型的陷阱态如何在其表面形成。此外,我们根据陷阱的化学起源和纳米晶体组成提出了对这些陷阱进行实验修复的方法。