Suppr超能文献

转录组数据集的荟萃分析确定了在哺乳动物生物钟起搏器中富集的基因。

Meta-analysis of transcriptomic datasets identifies genes enriched in the mammalian circadian pacemaker.

作者信息

Brown Laurence A, Williams John, Taylor Lewis, Thomson Ross J, Nolan Patrick M, Foster Russell G, Peirson Stuart N

机构信息

Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3RE, UK.

MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK.

出版信息

Nucleic Acids Res. 2017 Sep 29;45(17):9860-9873. doi: 10.1093/nar/gkx714.

Abstract

The master circadian pacemaker in mammals is located in the suprachiasmatic nuclei (SCN) which regulate physiology and behaviour, as well as coordinating peripheral clocks throughout the body. Investigating the function of the SCN has often focused on the identification of rhythmically expressed genes. However, not all genes critical for SCN function are rhythmically expressed. An alternative strategy is to characterize those genes that are selectively enriched in the SCN. Here, we examined the transcriptome of the SCN and whole brain (WB) of mice using meta-analysis of publicly deposited data across a range of microarray platforms and RNA-Seq data. A total of 79 microarrays were used (24 SCN and 55 WB samples, 4 different microarray platforms), alongside 17 RNA-Seq data files (7 SCN and 10 WB). 31 684 MGI gene symbols had data for at least one platform. Meta-analysis using a random effects model for weighting individual effect sizes (derived from differential expression between relevant SCN and WB samples) reliably detected known SCN markers. SCN-enriched transcripts identified in this study provide novel insights into SCN function, including identifying genes which may play key roles in SCN physiology or provide SCN-specific drivers.

摘要

哺乳动物的主昼夜节律起搏器位于视交叉上核(SCN),它调节生理和行为,并协调全身的外周生物钟。对视交叉上核功能的研究通常集中在对节律性表达基因的鉴定上。然而,并非所有对视交叉上核功能至关重要的基因都是节律性表达的。另一种策略是对那些在视交叉上核中选择性富集的基因进行表征。在这里,我们通过对一系列微阵列平台和RNA测序数据的公开数据进行荟萃分析,研究了小鼠视交叉上核和全脑(WB)的转录组。总共使用了79个微阵列(24个视交叉上核和55个全脑样本,4种不同的微阵列平台),以及17个RNA测序数据文件(7个视交叉上核和10个全脑)。31684个MGI基因符号在至少一个平台上有数据。使用随机效应模型对个体效应大小(源自相关视交叉上核和全脑样本之间的差异表达)进行加权的荟萃分析可靠地检测到了已知的视交叉上核标记。本研究中鉴定出的视交叉上核富集转录本对视交叉上核功能提供了新的见解,包括鉴定可能在视交叉上核生理学中起关键作用或提供视交叉上核特异性驱动因素的基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9c4/5737434/ff10ba0e778f/gkx714fig1.jpg

相似文献

1
Meta-analysis of transcriptomic datasets identifies genes enriched in the mammalian circadian pacemaker.
Nucleic Acids Res. 2017 Sep 29;45(17):9860-9873. doi: 10.1093/nar/gkx714.
2
Transcriptomic Plasticity of the Circadian Clock in Response to Photoperiod: A Study in Male Melatonin-Competent Mice.
J Biol Rhythms. 2024 Oct;39(5):423-439. doi: 10.1177/07487304241265439. Epub 2024 Aug 2.
3
The SCN Clock Governs Circadian Transcription Rhythms in Murine Epididymal White Adipose Tissue.
J Biol Rhythms. 2016 Dec;31(6):577-587. doi: 10.1177/0748730416666170. Epub 2016 Sep 21.
4
Neurobiology of Circadian Rhythm Regulation.
Sleep Med Clin. 2015 Dec;10(4):403-12. doi: 10.1016/j.jsmc.2015.08.003. Epub 2015 Sep 11.
5
Expression profiles and functional annotation analysis of mRNAs in suprachiasmatic nucleus of Clock mutant mice.
Gene. 2018 Mar 20;647:107-114. doi: 10.1016/j.gene.2017.12.056. Epub 2018 Jan 5.
7
Assembly of a comprehensive regulatory network for the mammalian circadian clock: a bioinformatics approach.
PLoS One. 2015 May 6;10(5):e0126283. doi: 10.1371/journal.pone.0126283. eCollection 2015.
10
Temporally chimeric mice reveal flexibility of circadian period-setting in the suprachiasmatic nucleus.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3657-62. doi: 10.1073/pnas.1511351113. Epub 2016 Mar 10.

引用本文的文献

1
Monoallelic gene expression in developing cells increases genetic noise and Shannon entropy.
Commun Biol. 2025 Jun 4;8(1):857. doi: 10.1038/s42003-025-08128-2.
4
Meta-analysis of Diurnal Transcriptomics in Mouse Liver Reveals Low Repeatability of Rhythm Analyses.
J Biol Rhythms. 2023 Dec;38(6):556-570. doi: 10.1177/07487304231179600. Epub 2023 Jun 29.
6
Timed exercise stabilizes behavioral rhythms but not molecular programs in the brain's suprachiasmatic clock.
iScience. 2023 Jan 18;26(2):106002. doi: 10.1016/j.isci.2023.106002. eCollection 2023 Feb 17.
8
Targeted Disruption of the () Gene Alters Photic Entrainment of the Circadian Clock.
Int J Mol Sci. 2021 Sep 6;22(17):9632. doi: 10.3390/ijms22179632.
9
Single-cell transcriptomics of suprachiasmatic nuclei reveal a Prokineticin-driven circadian network.
EMBO J. 2021 Oct 18;40(20):e108614. doi: 10.15252/embj.2021108614. Epub 2021 Sep 6.
10
Genesis of the Master Circadian Pacemaker in Mice.
Front Neurosci. 2021 Mar 23;15:659974. doi: 10.3389/fnins.2021.659974. eCollection 2021.

本文引用的文献

1
Regulating the Suprachiasmatic Nucleus (SCN) Circadian Clockwork: Interplay between Cell-Autonomous and Circuit-Level Mechanisms.
Cold Spring Harb Perspect Biol. 2017 Jan 3;9(1):a027706. doi: 10.1101/cshperspect.a027706.
2
Reciprocal interactions between circadian clocks and aging.
Mamm Genome. 2016 Aug;27(7-8):332-40. doi: 10.1007/s00335-016-9639-6. Epub 2016 May 2.
5
Maternal Ube3a Loss Disrupts Sleep Homeostasis But Leaves Circadian Rhythmicity Largely Intact.
J Neurosci. 2015 Oct 7;35(40):13587-98. doi: 10.1523/JNEUROSCI.2194-15.2015.
6
Ins and outs of GPCR signaling in primary cilia.
EMBO Rep. 2015 Sep;16(9):1099-113. doi: 10.15252/embr.201540530. Epub 2015 Aug 21.
7
Noncanonical Genomic Imprinting Effects in Offspring.
Cell Rep. 2015 Aug 11;12(6):979-91. doi: 10.1016/j.celrep.2015.07.017. Epub 2015 Jul 30.
8
The Regulatory Factor ZFHX3 Modifies Circadian Function in SCN via an AT Motif-Driven Axis.
Cell. 2015 Jul 30;162(3):607-21. doi: 10.1016/j.cell.2015.06.060.
10
Distinct roles for GABA across multiple timescales in mammalian circadian timekeeping.
Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):E3911-9. doi: 10.1073/pnas.1420753112. Epub 2015 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验