Herzog Erik D, Hermanstyne Tracey, Smyllie Nicola J, Hastings Michael H
Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130-4899.
Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.
Cold Spring Harb Perspect Biol. 2017 Jan 3;9(1):a027706. doi: 10.1101/cshperspect.a027706.
The suprachiasmatic nucleus (SCN) is the principal circadian clock of the brain, directing daily cycles of behavior and physiology. SCN neurons contain a cell-autonomous transcription-based clockwork but, in turn, circuit-level interactions synchronize the 20,000 or so SCN neurons into a robust and coherent daily timer. Synchronization requires neuropeptide signaling, regulated by a reciprocal interdependence between the molecular clockwork and rhythmic electrical activity, which in turn depends on a daytime Na drive and nighttime K drag. Recent studies exploiting intersectional genetics have started to identify the pacemaking roles of particular neuronal groups in the SCN. They support the idea that timekeeping involves nonlinear and hierarchical computations that create and incorporate timing information through the interactions between key groups of neurons within the SCN circuit. The field is now poised to elucidate these computations, their underlying cellular mechanisms, and how the SCN clock interacts with subordinate circadian clocks across the brain to determine the timing and efficiency of the sleep-wake cycle, and how perturbations of this coherence contribute to neurological and psychiatric illness.
视交叉上核(SCN)是大脑的主要昼夜节律时钟,指导着行为和生理的日常周期。SCN神经元包含一个基于细胞自主转录的生物钟机制,但反过来,电路水平的相互作用将大约20000个SCN神经元同步成一个强大且连贯的日常定时器。同步需要神经肽信号传导,这由分子生物钟机制和节律性电活动之间的相互依存关系调节,而这又依赖于白天的钠驱动和夜间的钾拖曳。最近利用交叉遗传学的研究已经开始确定SCN中特定神经元群体的起搏作用。这些研究支持这样一种观点,即计时涉及非线性和分层计算,通过SCN电路内关键神经元群体之间的相互作用来创建和整合时间信息。该领域目前正准备阐明这些计算、其潜在的细胞机制,以及SCN时钟如何与大脑中的从属昼夜节律时钟相互作用,以确定睡眠-觉醒周期的时间和效率,以及这种连贯性的扰动如何导致神经和精神疾病。