Suppr超能文献

从经典毒理学到 Tox21:20 世纪最后四分之一世纪以来,分子水平理解毒性反应的一些关键性概念和技术进步。

From Classical Toxicology to Tox21: Some Critical Conceptual and Technological Advances in the Molecular Understanding of the Toxic Response Beginning From the Last Quarter of the 20th Century.

机构信息

Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland.

Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington.

出版信息

Toxicol Sci. 2018 Jan 1;161(1):5-22. doi: 10.1093/toxsci/kfx186.

Abstract

Toxicology has made steady advances over the last 60+ years in understanding the mechanisms of toxicity at an increasingly finer level of cellular organization. Traditionally, toxicological studies have used animal models. However, the general adoption of the principles of 3R (Replace, Reduce, Refine) provided the impetus for the development of in vitro models in toxicity testing. The present commentary is an attempt to briefly discuss the transformation in toxicology that began around 1980. Many genes important in cellular protection and metabolism of toxicants were cloned and characterized in the 80s, and gene expression studies became feasible, too. The development of transgenic and knockout mice provided valuable animal models to investigate the role of specific genes in producing toxic effects of chemicals or protecting the organism from the toxic effects of chemicals. Further developments in toxicology came from the incorporation of the tools of "omics" (genomics, proteomics, metabolomics, interactomics), epigenetics, systems biology, computational biology, and in vitro biology. Collectively, the advances in toxicology made during the last 30-40 years are expected to provide more innovative and efficient approaches to risk assessment. A goal of experimental toxicology going forward is to reduce animal use and yet be able to conduct appropriate risk assessments and make sound regulatory decisions using alternative methods of toxicity testing. In that respect, Tox21 has provided a big picture framework for the future. Currently, regulatory decisions involving drugs, biologics, food additives, and similar compounds still utilize data from animal testing and human clinical trials. In contrast, the prioritization of environmental chemicals for further study can be made using in vitro screening and computational tools.

摘要

毒理学在过去的 60 多年中取得了稳步的进展,在越来越精细的细胞组织水平上了解毒性的机制。传统上,毒理学研究使用动物模型。然而,3R(替代、减少、优化)原则的普遍采用为毒性测试中体外模型的发展提供了动力。本评论试图简要讨论一下大约从 1980 年开始的毒理学转变。在 80 年代,许多在细胞保护和毒物代谢中重要的基因被克隆和表征,基因表达研究也变得可行。转基因和基因敲除小鼠的发展为研究特定基因在产生化学物质的毒性作用或保护生物体免受化学物质毒性作用方面的作用提供了有价值的动物模型。毒理学的进一步发展来自于“组学”(基因组学、蛋白质组学、代谢组学、相互作用组学)、表观遗传学、系统生物学、计算生物学和体外生物学工具的整合。总的来说,过去 30-40 年毒理学的进展有望为风险评估提供更具创新性和更有效的方法。实验毒理学的未来目标是减少动物的使用,同时能够使用替代毒性测试方法进行适当的风险评估和做出明智的监管决策。在这方面,Tox21 为未来提供了一个总体框架。目前,药物、生物制品、食品添加剂和类似化合物的监管决策仍然利用动物测试和人体临床试验的数据。相比之下,可以使用体外筛选和计算工具来确定环境化学物质进一步研究的优先级。

相似文献

2
Improving the human hazard characterization of chemicals: a Tox21 update.
Environ Health Perspect. 2013 Jul;121(7):756-65. doi: 10.1289/ehp.1205784. Epub 2013 Apr 19.
3
How omics technologies can contribute to the '3R' principles by introducing new strategies in animal testing.
Trends Biotechnol. 2006 Aug;24(8):343-6. doi: 10.1016/j.tibtech.2006.06.003. Epub 2006 Jun 16.
6
Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
Food Chem Toxicol. 2008 Mar;46 Suppl 1:S2-70. doi: 10.1016/j.fct.2008.02.008. Epub 2008 Feb 13.
8
Advancing Computational Toxicology by Interpretable Machine Learning.
Environ Sci Technol. 2023 Nov 21;57(46):17690-17706. doi: 10.1021/acs.est.3c00653. Epub 2023 May 24.
9
The US Federal Tox21 Program: A strategic and operational plan for continued leadership.
ALTEX. 2018;35(2):163-168. doi: 10.14573/altex.1803011. Epub 2018 Mar 8.
10
Toxicology and genetic toxicology in the new era of "toxicogenomics": impact of "-omics" technologies.
Mutat Res. 2002 Jan 29;499(1):13-25. doi: 10.1016/s0027-5107(01)00292-5.

引用本文的文献

1
Chemical Toxicants Used for Food Preservation in Africa. Is it a Case of Ignorance or Food Fraud? A Review.
Health Sci Rep. 2025 Apr 18;8(4):e70333. doi: 10.1002/hsr2.70333. eCollection 2025 Apr.
3
Underexplored Molecular Mechanisms of Toxicity.
J Xenobiot. 2024 Jul 18;14(3):939-949. doi: 10.3390/jox14030052.
5
Toxicoproteomics of Mono(2-ethylhexyl) phthalate and Perfluorooctanesulfonic Acid in Models of Prostatic Diseases.
Chem Res Toxicol. 2023 Feb 20;36(2):251-259. doi: 10.1021/acs.chemrestox.2c00328. Epub 2023 Feb 7.
7
Historical exposure to chemicals reduces tolerance to novel chemical stress in Daphnia (waterflea).
Mol Ecol. 2022 Jun;31(11):3098-3111. doi: 10.1111/mec.16451. Epub 2022 Apr 15.
8
Next-Generation Intestinal Toxicity Model of Human Embryonic Stem Cell-Derived Enterocyte-Like Cells.
Front Vet Sci. 2021 Sep 16;8:587659. doi: 10.3389/fvets.2021.587659. eCollection 2021.

本文引用的文献

2
Policy reforms to update chemical safety testing.
Science. 2017 Mar 10;355(6329):1016-1018. doi: 10.1126/science.aak9919. Epub 2017 Mar 9.
5
Adverse Outcome Pathways-Organizing Toxicological Information to Improve Decision Making.
J Pharmacol Exp Ther. 2016 Jan;356(1):170-81. doi: 10.1124/jpet.115.228239. Epub 2015 Nov 4.
6
What do animal experiments tell us that in vitro systems cannot? The Human Toxome Project.
Regul Toxicol Pharmacol. 2016 Mar;75:1-4. doi: 10.1016/j.yrtph.2015.09.027. Epub 2015 Sep 26.
7
The Aryl Hydrocarbon Receptor: A Key Bridging Molecule of External and Internal Chemical Signals.
Environ Sci Technol. 2015 Aug 18;49(16):9518-31. doi: 10.1021/acs.est.5b00385. Epub 2015 Aug 10.
8
Adverse Outcome Pathways can drive non-animal approaches for safety assessment.
J Appl Toxicol. 2015 Sep;35(9):971-5. doi: 10.1002/jat.3165. Epub 2015 May 5.
9
Predicting drug metabolism: experiment and/or computation?
Nat Rev Drug Discov. 2015 Jun;14(6):387-404. doi: 10.1038/nrd4581. Epub 2015 Apr 24.
10
Three-dimensional cell culture: a breakthrough in vivo.
Int J Mol Sci. 2015 Mar 11;16(3):5517-27. doi: 10.3390/ijms16035517.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验