Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
Integrated Laboratory Systems Inc. (ILS), Research Triangle Park, Durham, NC, United States.
Front Public Health. 2021 Aug 18;9:694834. doi: 10.3389/fpubh.2021.694834. eCollection 2021.
Higher-throughput, mode-of-action-based assays provide a valuable approach to expedite chemical evaluation for human health risk assessment. In this study, we combined the high-throughput alkaline DNA damage-sensing CometChip assay with the TGx-DDI transcriptomic biomarker (DDI = DNA damage-inducing) using high-throughput TempO-Seq, as an integrated genotoxicity testing approach. We used metabolically competent differentiated human HepaRG™ cell cultures to enable the identification of chemicals that require bioactivation to cause genotoxicity. We studied 12 chemicals (nine DDI, three non-DDI) in increasing concentrations to measure and classify chemicals based on their ability to damage DNA. The CometChip classified 10/12 test chemicals correctly, missing a positive DDI call for aflatoxin B1 and propyl gallate. The poor detection of aflatoxin B1 adducts is consistent with the insensitivity of the standard alkaline comet assay to bulky lesions (a shortcoming that can be overcome by trapping repair intermediates). The TGx-DDI biomarker accurately classified 10/12 agents. TGx-DDI correctly identified aflatoxin B1 as DDI, demonstrating efficacy for combined used of these complementary methodologies. Zidovudine, a known DDI chemical, was misclassified as it inhibits transcription, which prevents measurable changes in gene expression. Eugenol, a non-DDI chemical known to render misleading positive results at high concentrations, was classified as DDI at the highest concentration tested. When combined, the CometChip assay and the TGx-DDI biomarker were 100% accurate in identifying chemicals that induce DNA damage. Quantitative benchmark concentration (BMC) modeling was applied to evaluate chemical potencies for both assays. The BMCs for the CometChip assay and the TGx-DDI biomarker were highly concordant (within 4-fold) and resulted in identical potency rankings. These results demonstrate that these two assays can be integrated for efficient identification and potency ranking of DNA damaging agents in HepaRG™ cell cultures.
高通量、基于作用模式的检测方法为加快化学物质评估、进行人类健康风险评估提供了一种有价值的方法。在这项研究中,我们将高通量碱性 DNA 损伤感应彗星芯片检测与 TGx-DDI 转录组生物标志物(DDI=DNA 损伤诱导)相结合,同时使用高通量 TempO-Seq,作为一种综合遗传毒性测试方法。我们使用代谢功能健全的分化人 HepaRG™细胞培养物,以鉴定需要生物活化才能引起遗传毒性的化学物质。我们用 12 种化学物质(9 种 DDI,3 种非 DDI)进行了递增浓度的研究,以根据其损伤 DNA 的能力对化学物质进行分类。彗星芯片正确分类了 10/12 种测试化学物质,对黄曲霉毒素 B1 和没食子酸丙酯的阳性 DDI 结果漏检。黄曲霉毒素 B1 加合物检测效果不佳与碱性彗星检测法对大体积损伤不敏感的特性一致(这一缺点可以通过捕获修复中间体来克服)。TGx-DDI 生物标志物准确地对 10/12 种试剂进行了分类。TGx-DDI 正确地将黄曲霉毒素 B1 鉴定为 DDI,证明了这两种互补方法联合使用的有效性。齐多夫定,一种已知的 DDI 化学物质,被错误分类,因为它抑制转录,从而阻止了基因表达的可测量变化。丁香酚,一种已知的在高浓度下产生误导性阳性结果的非 DDI 化学物质,在测试的最高浓度下被归类为 DDI。当这两种方法结合使用时,对引起 DNA 损伤的化学物质的识别准确率达到 100%。定量基准浓度 (BMC) 建模被应用于评估两种检测方法的化学物质效力。彗星芯片检测法和 TGx-DDI 生物标志物的 BMC 高度一致(相差 4 倍以内),并导致相同的效力排名。这些结果表明,这两种检测方法可用于在 HepaRG™细胞培养物中高效识别和效力排名 DNA 损伤剂。