Suppr超能文献

根分生组织中细胞个体发生的渐进式框架。

Framework for gradual progression of cell ontogeny in the root meristem.

机构信息

Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands.

Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.

出版信息

Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):E8922-E8929. doi: 10.1073/pnas.1707400114. Epub 2017 Oct 2.

Abstract

In plants, apical meristems allow continuous growth along the body axis. Within the root apical meristem, a group of slowly dividing quiescent center cells is thought to limit stem cell activity to directly neighboring cells, thus endowing them with unique properties, distinct from displaced daughters. This binary identity of the stem cells stands in apparent contradiction to the more gradual changes in cell division potential and differentiation that occur as cells move further away from the quiescent center. To address this paradox and to infer molecular organization of the root meristem, we used a whole-genome approach to determine dominant transcriptional patterns along root ontogeny zones. We found that the prevalent patterns are expressed in two opposing gradients. One is characterized by genes associated with development, the other enriched in differentiation genes. We confirmed these transcript gradients, and demonstrate that these translate to gradients in protein accumulation and gradual changes in cellular properties. We also show that gradients are genetically controlled through multiple pathways. Based on these findings, we propose that cells in the root meristem gradually transition from stem cell activity toward differentiation.

摘要

在植物中,顶端分生组织允许沿着体轴进行持续生长。在根顶端分生组织中,一群缓慢分裂的静止中心细胞被认为将干细胞活性限制在直接相邻的细胞中,从而赋予它们独特的特性,与被取代的子细胞不同。这种干细胞的二元身份与细胞分裂潜能和分化的更渐进变化明显矛盾,这些变化发生在细胞远离静止中心时。为了解决这个矛盾,并推断根分生组织的分子组织,我们使用全基因组方法来确定沿根发生区的主要转录模式。我们发现,主要模式以两种相反的梯度表达。一种是与发育相关的基因特征,另一种是分化基因丰富。我们证实了这些转录梯度,并证明它们转化为蛋白质积累的梯度和细胞特性的逐渐变化。我们还表明,梯度通过多种途径受到遗传控制。基于这些发现,我们提出根分生组织中的细胞逐渐从干细胞活性向分化转变。

相似文献

1
Framework for gradual progression of cell ontogeny in the root meristem.
Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):E8922-E8929. doi: 10.1073/pnas.1707400114. Epub 2017 Oct 2.
2
A SCARECROW-based regulatory circuit controls Arabidopsis thaliana meristem size from the root endodermis.
Planta. 2016 May;243(5):1159-68. doi: 10.1007/s00425-016-2471-0. Epub 2016 Feb 5.
4
Apical meristem exhaustion during determinate primary root growth in the moots koom 1 mutant of Arabidopsis thaliana.
Planta. 2011 Dec;234(6):1163-77. doi: 10.1007/s00425-011-1470-4. Epub 2011 Jul 9.
5
PHABULOSA controls the quiescent center-independent root meristem activities in Arabidopsis thaliana.
PLoS Genet. 2015 Mar 2;11(3):e1004973. doi: 10.1371/journal.pgen.1004973. eCollection 2015 Mar.
6
ULTRAPETALA1 maintains Arabidopsis root stem cell niche independently of ARABIDOPSIS TRITHORAX1.
New Phytol. 2020 Feb;225(3):1261-1272. doi: 10.1111/nph.16213. Epub 2019 Oct 28.
8
TIME FOR COFFEE controls root meristem size by changes in auxin accumulation in Arabidopsis.
J Exp Bot. 2014 Jan;65(1):275-86. doi: 10.1093/jxb/ert374. Epub 2013 Nov 25.

引用本文的文献

3
O-glycosylation of the transcription factor SPATULA promotes style development in Arabidopsis.
Nat Plants. 2024 Feb;10(2):283-299. doi: 10.1038/s41477-023-01617-4. Epub 2024 Jan 26.
5
A Common Molecular Signature Indicates the Pre-Meristematic State of Plant Calli.
Int J Mol Sci. 2023 Aug 23;24(17):13122. doi: 10.3390/ijms241713122.
8
A single-cell Arabidopsis root atlas reveals developmental trajectories in wild-type and cell identity mutants.
Dev Cell. 2022 Feb 28;57(4):543-560.e9. doi: 10.1016/j.devcel.2022.01.008. Epub 2022 Feb 7.
9
The hidden half comes into the spotlight: Peeking inside the black box of root developmental phases.
Plant Commun. 2021 Sep 23;3(1):100246. doi: 10.1016/j.xplc.2021.100246. eCollection 2022 Jan 10.

本文引用的文献

1
The PLETHORA Gene Regulatory Network Guides Growth and Cell Differentiation in Arabidopsis Roots.
Plant Cell. 2016 Dec;28(12):2937-2951. doi: 10.1105/tpc.16.00656. Epub 2016 Dec 5.
2
High-Resolution Expression Map of the Arabidopsis Root Reveals Alternative Splicing and lincRNA Regulation.
Dev Cell. 2016 Nov 21;39(4):508-522. doi: 10.1016/j.devcel.2016.10.012. Epub 2016 Nov 10.
3
Analysis of RNA-Seq Data Using TopHat and Cufflinks.
Methods Mol Biol. 2016;1374:339-61. doi: 10.1007/978-1-4939-3167-5_18.
4
A set of domain-specific markers in the Arabidopsis embryo.
Plant Reprod. 2015 Dec;28(3-4):153-60. doi: 10.1007/s00497-015-0266-2. Epub 2015 Jul 28.
5
MorphoGraphX: A platform for quantifying morphogenesis in 4D.
Elife. 2015 May 6;4:05864. doi: 10.7554/eLife.05864.
6
Ligation-independent cloning for plant research.
Methods Mol Biol. 2015;1284:421-31. doi: 10.1007/978-1-4939-2444-8_21.
7
PLETHORA gradient formation mechanism separates auxin responses.
Nature. 2014 Nov 6;515(7525):125-129. doi: 10.1038/nature13663. Epub 2014 Aug 24.
8
A bHLH complex activates vascular cell division via cytokinin action in root apical meristem.
Curr Biol. 2014 Sep 8;24(17):2053-8. doi: 10.1016/j.cub.2014.07.050. Epub 2014 Aug 14.
10
Plant development. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation.
Science. 2014 Aug 22;345(6199):933-7. doi: 10.1126/science.1253736. Epub 2014 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验