Suppr超能文献

磁力驱动的石墨烯图案引导人神经元细胞的突触形成

Magnetic Force-Driven Graphene Patterns to Direct Synaptogenesis of Human Neuronal Cells.

作者信息

Min Kyung-Joon, Kim Tae-Hyung, Choi Jeong-Woo

机构信息

Department of Biomedical Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742, Korea.

School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 156-756, Korea.

出版信息

Materials (Basel). 2017 Oct 2;10(10):1151. doi: 10.3390/ma10101151.

Abstract

Precise control of axonal growth and synaptic junction formation are incredibly important to repair and/or to mimic human neuronal network. Here, we report a graphene oxide (GO)-based hybrid patterns that were proven to be excellent for guiding axonal growth and its consequent synapse formation of human neural cells. Unlike the previous method that utilized micro-contacting printing technique to generate GO patterns, here, GO-encapsulated magnetic nanoparticles were first synthesized and utilized as core materials wherein the external magnetic force facilitated the transfer of GO film to the desired substrate. Owing to the intrinsic property of GO that provides stable cell attachment and growth for long-term culture, human neuronal cells could be effectively patterned on the biocompatible polymer substrates with different pattern sizes. By using magnetic force-driven GO hybrid patterns, we demonstrated that accumulation and expression level of Synaptophysin of neurons could be effectively controlled with varying sizes of each pattern. The synaptic network between each neuron could be precisely controlled and matched by guiding axonal direction. This work provides treatment and modeling of brain diseases and spinal cord injuries.

摘要

精确控制轴突生长和突触连接形成对于修复和/或模拟人类神经网络极为重要。在此,我们报道了一种基于氧化石墨烯(GO)的混合图案,已证明其在引导人类神经细胞的轴突生长及其随后的突触形成方面表现出色。与先前利用微接触印刷技术生成GO图案的方法不同,此处首先合成了GO包裹的磁性纳米颗粒并将其用作核心材料,其中外部磁力促进了GO膜转移到所需的底物上。由于GO的固有特性可为长期培养提供稳定的细胞附着和生长,人类神经元细胞能够有效地在具有不同图案尺寸的生物相容性聚合物底物上进行图案化。通过使用磁力驱动的GO混合图案,我们证明了神经元突触素的积累和表达水平可以通过改变每个图案的尺寸来有效控制。每个神经元之间的突触网络可以通过引导轴突方向来精确控制和匹配。这项工作为脑部疾病和脊髓损伤的治疗和建模提供了帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5cb/5666957/71f297f84bb3/materials-10-01151-g001.jpg

相似文献

1
Magnetic Force-Driven Graphene Patterns to Direct Synaptogenesis of Human Neuronal Cells.
Materials (Basel). 2017 Oct 2;10(10):1151. doi: 10.3390/ma10101151.
3
Micro-Pattern of Graphene Oxide Films Using Metal Bonding.
Micromachines (Basel). 2020 Apr 10;11(4):399. doi: 10.3390/mi11040399.
6
Solution-based, flexible, and transparent patterned reduced graphene oxide electrodes for lab-on-chip applications.
Nanotechnology. 2020 Feb 7;31(7):075302. doi: 10.1088/1361-6528/ab50ee. Epub 2019 Oct 24.
7
Graphene Oxide Hierarchical Patterns for the Derivation of Electrophysiologically Functional Neuron-like Cells from Human Neural Stem Cells.
ACS Appl Mater Interfaces. 2016 Jul 20;8(28):17763-74. doi: 10.1021/acsami.6b01804. Epub 2016 Jul 5.
8
3D Organotypic Spinal Cultures: Exploring Neuron and Neuroglia Responses Upon Prolonged Exposure to Graphene Oxide.
Front Syst Neurosci. 2019 Jan 24;13:1. doi: 10.3389/fnsys.2019.00001. eCollection 2019.
10
Cell Migration According to Shape of Graphene Oxide Micropatterns.
Micromachines (Basel). 2016 Oct 14;7(10):186. doi: 10.3390/mi7100186.

引用本文的文献

1
The mechanical, optical, and thermal properties of graphene influencing its pre-clinical use in treating neurological diseases.
Front Neurosci. 2023 Jun 9;17:1162493. doi: 10.3389/fnins.2023.1162493. eCollection 2023.
2
Graphene and graphene-based materials in axonal repair of spinal cord injury.
Neural Regen Res. 2022 Oct;17(10):2117-2125. doi: 10.4103/1673-5374.335822.
3
Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering.
Nanomaterials (Basel). 2021 Sep 8;11(9):2337. doi: 10.3390/nano11092337.
5
Favorable Biological Responses of Neural Cells and Tissue Interacting with Graphene Oxide Microfibers.
ACS Omega. 2017 Nov 30;2(11):8253-8263. doi: 10.1021/acsomega.7b01354. Epub 2017 Nov 21.

本文引用的文献

1
The use of brain organoids to investigate neural development and disease.
Nat Rev Neurosci. 2017 Oct;18(10):573-584. doi: 10.1038/nrn.2017.107. Epub 2017 Sep 7.
2
Graphene-Based Materials for Stem Cell Applications.
Materials (Basel). 2015 Dec 11;8(12):8674-8690. doi: 10.3390/ma8125481.
3
Guided self-organization and cortical plate formation in human brain organoids.
Nat Biotechnol. 2017 Jul;35(7):659-666. doi: 10.1038/nbt.3906. Epub 2017 May 31.
4
Guiding osteogenesis of mesenchymal stem cells using carbon-based nanomaterials.
Nano Converg. 2017;4(1):2. doi: 10.1186/s40580-017-0096-z. Epub 2017 Jan 25.
5
Priming nanoparticle-guided diagnostics and therapeutics towards human organs-on-chips microphysiological system.
Nano Converg. 2016;3(1):24. doi: 10.1186/s40580-016-0084-8. Epub 2016 Oct 1.
6
Organoids as an in vitro model of human development and disease.
Nat Cell Biol. 2016 Mar;18(3):246-54. doi: 10.1038/ncb3312.
8
Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications.
Chem Rev. 2015 Apr 8;115(7):2483-531. doi: 10.1021/cr500537t. Epub 2015 Feb 18.
9
Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury.
Neuron. 2014 Aug 20;83(4):789-96. doi: 10.1016/j.neuron.2014.07.014. Epub 2014 Aug 7.
10
Guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds.
Adv Mater. 2014 Jun 11;26(22):3673-80. doi: 10.1002/adma.201400523. Epub 2014 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验