Suppr超能文献

3D 器官型脊髓培养:探索长时间暴露于氧化石墨烯后神经元和神经胶质细胞的反应。

3D Organotypic Spinal Cultures: Exploring Neuron and Neuroglia Responses Upon Prolonged Exposure to Graphene Oxide.

作者信息

Musto Mattia, Rauti Rossana, Rodrigues Artur Filipe, Bonechi Elena, Ballerini Clara, Kostarelos Kostas, Ballerini Laura

机构信息

Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Trieste, Italy.

Nanomedicine Lab, Faculty of Biology, Medicine & Health and National Graphene Institute, University of Manchester, Manchester, United Kingdom.

出版信息

Front Syst Neurosci. 2019 Jan 24;13:1. doi: 10.3389/fnsys.2019.00001. eCollection 2019.

Abstract

Graphene-based nanomaterials are increasingly engineered as components of biosensors, interfaces or drug delivery platforms in neuro-repair strategies. In these developments, the mostly used derivative of graphene is graphene oxide (GO). To tailor the safe development of GO nanosheets, we need to model tissue responses, and in particular the reactivity of microglia, a sub-population of neuroglia that acts as the first active immune response, when challenged by GO. Here, we investigated central nervous system (CNS) tissue reactivity upon long-term exposure to GO nanosheets in 3D culture models. We used the mouse organotypic spinal cord cultures, ideally suited for studying long-term interference with cues delivered at controlled times and concentrations. In cultured spinal segments, the normal presence, distribution and maturation of anatomically distinct classes of neurons and resident neuroglial cells are preserved. Organotypic explants were developed for 2 weeks embedded in fibrin glue alone or presenting GO nanosheets at 10, 25 and 50 μg/mL. We addressed the impact of such treatments on premotor synaptic activity monitored by patch clamp recordings of ventral interneurons. We investigated by immunofluorescence and confocal microscopy the accompanying glial responses to GO exposure, focusing on resident microglia, tested in organotypic spinal slices and in isolated neuroglia cultures. Our results suggest that microglia reactivity to accumulation of GO flakes, maybe due to active phagocytosis, may trim down synaptic activity, although in the absence of an effective activation of inflammatory response and in the absence of neuronal cell death.

摘要

基于石墨烯的纳米材料越来越多地被设计成神经修复策略中生物传感器、界面或药物递送平台的组件。在这些发展中,最常用的石墨烯衍生物是氧化石墨烯(GO)。为了定制GO纳米片的安全开发,我们需要模拟组织反应,特别是小胶质细胞的反应性,小胶质细胞是神经胶质细胞的一个亚群,在受到GO挑战时作为第一个活跃的免疫反应。在这里,我们研究了在三维培养模型中长期暴露于GO纳米片后中枢神经系统(CNS)组织的反应性。我们使用了小鼠器官型脊髓培养物,非常适合研究在受控时间和浓度下对传递的信号的长期干扰。在培养的脊髓节段中,解剖学上不同类型的神经元和常驻神经胶质细胞的正常存在、分布和成熟得以保留。器官型外植体在单独嵌入纤维蛋白胶或呈现浓度为10、25和50μg/mL的GO纳米片的情况下培养2周。我们通过腹侧中间神经元的膜片钳记录来研究这种处理对运动前突触活动的影响。我们通过免疫荧光和共聚焦显微镜研究了伴随的神经胶质细胞对GO暴露的反应,重点关注常驻小胶质细胞,在器官型脊髓切片和分离的神经胶质细胞培养物中进行了测试。我们的结果表明,小胶质细胞对GO薄片积累的反应性,可能由于活跃的吞噬作用,可能会降低突触活动,尽管在没有有效激活炎症反应和没有神经元细胞死亡的情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1713/6354065/c6d76c410f07/fnsys-13-00001-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验