Suppr超能文献

通过体外代谢工程对淀粉进行完全氧化来实现绿色氢气生产的先进水分解。

Advanced water splitting for green hydrogen gas production through complete oxidation of starch by in vitro metabolic engineering.

机构信息

Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, VA 24061, USA.

Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA.

出版信息

Metab Eng. 2017 Nov;44:246-252. doi: 10.1016/j.ymben.2017.09.015. Epub 2017 Sep 30.

Abstract

Starch is a natural energy storage compound and is hypothesized to be a high-energy density chemical compound or solar fuel. In contrast to industrial hydrolysis of starch to glucose, an alternative ATP-free phosphorylation of starch was designed to generate cost-effective glucose 6-phosphate by using five thermophilic enzymes (i.e., isoamylase, alpha-glucan phosphorylase, 4-α-glucanotransferase, phosphoglucomutase, and polyphosphate glucokinase). This enzymatic phosphorolysis is energetically advantageous because the energy of α-1,4-glycosidic bonds among anhydroglucose units is conserved in the form of phosphorylated glucose. Furthermore, we demonstrated an in vitro 17-thermophilic enzyme pathway that can convert all glucose units of starch, regardless of branched and linear contents, with water to hydrogen at a theoretic yield (i.e., 12 H per glucose), three times of the theoretical yield from dark microbial fermentation. The use of a biomimetic electron transport chain enabled to achieve a maximum volumetric productivity of 90.2mmol of H/L/h at 20g/L starch. The complete oxidation of starch to hydrogen by this in vitro synthetic (enzymatic) biosystem suggests that starch as a natural solar fuel becomes a high-density hydrogen storage compound with a gravimetric density of more than 14% H-based mass and an electricity density of more than 3000Wh/kg of starch.

摘要

淀粉是一种天然的能量储存化合物,被推测为高能量密度的化学化合物或太阳能燃料。与工业上对淀粉进行水解生成葡萄糖的方法不同,本研究设计了一种替代的、无需 ATP 的淀粉磷酸化方法,利用 5 种嗜热酶(即异淀粉酶、α-葡聚糖磷酸化酶、4-α-葡聚糖转移酶、磷酸葡萄糖变位酶和多聚磷酸葡萄糖激酶)来生成具有成本效益的葡萄糖 6-磷酸。这种酶促磷酸解在能量上具有优势,因为在无定形葡萄糖单元之间的α-1,4-糖苷键的能量以磷酸化葡萄糖的形式得以保留。此外,我们还展示了一种体外 17 种嗜热酶途径,可以利用水将淀粉中的所有葡萄糖单元(无论分支和线性含量如何)转化为氢气,理论产率为每葡萄糖 12 H,是暗微生物发酵的理论产率的 3 倍。使用仿生电子传递链使该体外合成(酶)生物系统能够在 20g/L 淀粉浓度下达到 90.2mmol H/L/h 的最大体积产率。该体外合成酶生物系统可以将淀粉完全氧化为氢气,这表明淀粉作为一种天然的太阳能燃料,成为一种高密度的氢气储存化合物,其基于质量的重量密度超过 14%,基于淀粉的电能密度超过 3000Wh/kg。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验