Suppr超能文献

Lkb1调节颗粒细胞迁移和小脑皮质的皮质折叠。

Lkb1 regulates granule cell migration and cortical folding of the cerebellar cortex.

作者信息

Ryan Kaitlyn E, Kim Patrick S, Fleming Jonathan T, Brignola Emily, Cheng Frances Y, Litingtung Ying, Chiang Chin

机构信息

Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA.

Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA.

出版信息

Dev Biol. 2017 Dec 1;432(1):165-177. doi: 10.1016/j.ydbio.2017.09.036. Epub 2017 Sep 30.

Abstract

Cerebellar growth and foliation require the Hedgehog-driven proliferation of granule cell precursors (GCPs) in the external granule layer (EGL). However, that increased or extended GCP proliferation generally does not elicit ectopic folds suggests that additional determinants control cortical expansion and foliation during cerebellar development. Here, we find that genetic loss of the serine-threonine kinase Liver Kinase B1 (Lkb1) in GCPs increased cerebellar cortical size and foliation independent of changes in proliferation or Hedgehog signaling. This finding is unexpected given that Lkb1 has previously shown to be critical for Hedgehog pathway activation in cultured cells. Consistent with unchanged proliferation rate of GCPs, the cortical expansion of Lkb1 mutants is accompanied by thinning of the EGL. The plane of cell division, which has been implicated in diverse processes from epithelial surface expansions to gyrification of the human cortex, remains unchanged in the mutants when compared to wild-type controls. However, we find that Lkb1 mutants display delayed radial migration of post-mitotic GCPs that coincides with increased cortical size, suggesting that aberrant cell migration may contribute to the cortical expansion and increase foliation. Taken together, our results reveal an important role for Lkb1 in regulating cerebellar cortical size and foliation in a Hedgehog-independent manner.

摘要

小脑的生长和叶状化需要刺猬信号通路驱动颗粒细胞前体(GCPs)在外颗粒层(EGL)中增殖。然而,GCP增殖增加或时间延长通常不会引发异位褶皱,这表明在小脑发育过程中,还有其他决定因素控制着皮质扩张和叶状化。在这里,我们发现GCPs中丝氨酸 - 苏氨酸激酶肝激酶B1(Lkb1)的基因缺失会增加小脑皮质大小和叶状化,且与增殖或刺猬信号通路的变化无关。鉴于Lkb1先前已被证明在培养细胞中对刺猬信号通路激活至关重要,这一发现出乎意料。与GCPs增殖速率不变一致,Lkb1突变体的皮质扩张伴随着EGL变薄。细胞分裂平面在突变体中与野生型对照相比保持不变,细胞分裂平面涉及从上皮表面扩张到人类皮质脑回形成的多种过程。然而,我们发现Lkb1突变体显示有丝分裂后GCPs的径向迁移延迟,这与皮质大小增加同时出现,表明异常细胞迁移可能导致皮质扩张并增加叶状化。综上所述,我们的结果揭示了Lkb1在以不依赖刺猬信号通路的方式调节小脑皮质大小和叶状化方面的重要作用。

相似文献

1
Lkb1 regulates granule cell migration and cortical folding of the cerebellar cortex.
Dev Biol. 2017 Dec 1;432(1):165-177. doi: 10.1016/j.ydbio.2017.09.036. Epub 2017 Sep 30.
3
Hedgehog antagonist REN(KCTD11) regulates proliferation and apoptosis of developing granule cell progenitors.
J Neurosci. 2005 Sep 7;25(36):8338-46. doi: 10.1523/JNEUROSCI.2438-05.2005.
4
5
Mouse model reveals the role of RERE in cerebellar foliation and the migration and maturation of Purkinje cells.
PLoS One. 2014 Jan 23;9(1):e87518. doi: 10.1371/journal.pone.0087518. eCollection 2014.
6
Microarchitectural changes during development of the cerebellar cortex.
Int J Dev Biol. 2010;54(4):691-8. doi: 10.1387/ijdb.082670mm.
10
Dynamics of the cell division orientation of granule cell precursors during cerebellar development.
Mech Dev. 2017 Oct;147:1-7. doi: 10.1016/j.mod.2017.06.002. Epub 2017 Jun 17.

引用本文的文献

2
Cell division angle predicts the level of tissue mechanics that tune the amount of cerebellar folding.
Development. 2024 Feb 1;151(3). doi: 10.1242/dev.202184. Epub 2024 Feb 13.
3
Regulation of cerebellar network development by granule cells and their molecules.
Front Mol Neurosci. 2023 Jul 14;16:1236015. doi: 10.3389/fnmol.2023.1236015. eCollection 2023.
5
Abnormal Cerebellar Development Is Involved in Dystonia-Like Behaviors and Motor Dysfunction of Autistic BTBR Mice.
Front Cell Dev Biol. 2020 Apr 7;8:231. doi: 10.3389/fcell.2020.00231. eCollection 2020.
7
Liver kinase B1 depletion from astrocytes worsens disease in a mouse model of multiple sclerosis.
Glia. 2020 Mar;68(3):600-616. doi: 10.1002/glia.23742. Epub 2019 Oct 30.
8
Inhibition of COX2/PGD2-Related Autophagy Is Involved in the Mechanism of Brain Injury in T2DM Rat.
Front Cell Neurosci. 2019 Feb 27;13:68. doi: 10.3389/fncel.2019.00068. eCollection 2019.
9
An Improved Method for Differentiating Mouse Embryonic Stem Cells into Cerebellar Purkinje Neurons.
Cerebellum. 2019 Jun;18(3):406-421. doi: 10.1007/s12311-019-1007-0.
10
Shaping Diversity Into the Brain's Form and Function.
Front Neural Circuits. 2018 Oct 10;12:83. doi: 10.3389/fncir.2018.00083. eCollection 2018.

本文引用的文献

1
Regulation of Cerebral Cortex Folding by Controlling Neuronal Migration via FLRT Adhesion Molecules.
Cell. 2017 May 4;169(4):621-635.e16. doi: 10.1016/j.cell.2017.04.012.
4
Growth and folding of the mammalian cerebral cortex: from molecules to malformations.
Nat Rev Neurosci. 2014 Apr;15(4):217-32. doi: 10.1038/nrn3707.
5
Role of radial glial cells in cerebral cortex folding.
Curr Opin Neurobiol. 2014 Aug;27:39-46. doi: 10.1016/j.conb.2014.02.007. Epub 2014 Mar 12.
6
The circadian molecular clock regulates adult hippocampal neurogenesis by controlling the timing of cell-cycle entry and exit.
Cell Rep. 2013 Nov 27;5(4):961-73. doi: 10.1016/j.celrep.2013.10.037. Epub 2013 Nov 21.
8
Activation of Hedgehog signaling by loss of GNAS causes heterotopic ossification.
Nat Med. 2013 Nov;19(11):1505-12. doi: 10.1038/nm.3314. Epub 2013 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验