Institute of Toxicology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacherstr. 67, 55131, Mainz, Germany.
Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA, 19426, USA.
Arch Toxicol. 2018 Feb;92(2):759-775. doi: 10.1007/s00204-017-2066-y. Epub 2017 Oct 3.
Reactive oxygen species (ROS)-induced apoptosis has been extensively studied. Increasing evidence suggests that ROS, for instance, induced by hydrogen peroxide (HO), might also trigger regulated necrotic cell death pathways. Almost nothing is known about the cell death pathways triggered by tertiary-butyl hydroperoxide (t-BuOOH), a widely used inducer of oxidative stress. The lipid peroxidation products induced by t-BuOOH are involved in the pathophysiology of many diseases, such as cancer, cardiovascular diseases, or diabetes. In this study, we exposed murine fibroblasts (NIH3T3) or human keratinocytes (HaCaT) to t-BuOOH (50 or 200 μM, respectively) which induced a rapid necrotic cell death. Well-established regulators of cell death, i.e., p53, poly(ADP)ribose polymerase-1 (PARP-1), the stress kinases p38 and c-Jun N-terminal-kinases 1/2 (JNK1/2), or receptor-interacting serine/threonine protein kinase 1 (RIPK1) and 3 (RIPK3), were not required for t-BuOOH-mediated cell death. Using the selective inhibitors ferrostatin-1 (1 μM) and liproxstatin-1 (1 μM), we identified ferroptosis, a recently discovered cell death mechanism dependent on iron and lipid peroxidation, as the main cell death pathway. Accordingly, t-BuOOH exposure resulted in a ferrostatin-1- and liproxstatin-1-sensitive increase in lipid peroxidation and cytosolic ROS. Ferroptosis was executed independently from other t-BuOOH-mediated cellular damages, i.e., loss of mitochondrial membrane potential, DNA double-strand breaks, or replication block. HO did not cause ferroptosis at equitoxic concentrations (300 μM) and induced a (1) lower and (2) ferrostatin-1- or liproxstatin-1-insensitive increase in lipid peroxidation. We identify that t-BuOOH and HO produce a different pattern of lipid peroxidation, thereby leading to different cell death pathways and present t-BuOOH as a novel inducer of ferroptosis.
活性氧(ROS)诱导的细胞凋亡已得到广泛研究。越来越多的证据表明,ROS(例如,由过氧化氢(HO)诱导)也可能引发调节性细胞坏死途径。对于叔丁基过氧化物(t-BuOOH)引发的细胞死亡途径,几乎一无所知,而 t-BuOOH 是一种广泛用于诱导氧化应激的物质。t-BuOOH 诱导的脂质过氧化产物参与了许多疾病的病理生理学过程,如癌症、心血管疾病或糖尿病。在这项研究中,我们将鼠成纤维细胞(NIH3T3)或人角质形成细胞(HaCaT)暴露于 t-BuOOH(分别为 50 或 200 μM)中,这会导致快速的坏死性细胞死亡。细胞死亡的既定调节剂,即 p53、聚(ADP-核糖)聚合酶-1(PARP-1)、应激激酶 p38 和 c-Jun N 末端激酶 1/2(JNK1/2)或受体相互作用丝氨酸/苏氨酸蛋白激酶 1(RIPK1)和 3(RIPK3),对于 t-BuOOH 介导的细胞死亡不是必需的。使用选择性抑制剂 ferrostatin-1(1 μM)和 liproxstatin-1(1 μM),我们确定铁死亡,一种最近发现的依赖于铁和脂质过氧化的细胞死亡机制,是主要的细胞死亡途径。因此,t-BuOOH 暴露会导致 ferrostatin-1 和 liproxstatin-1 敏感的脂质过氧化和细胞质 ROS 增加。铁死亡独立于 t-BuOOH 介导的其他细胞损伤(即线粒体膜电位丧失、DNA 双链断裂或复制受阻)而进行。在等毒性浓度(300 μM)下,HO 不会引起铁死亡,并导致(1)较低的和(2)ferrostatin-1 或 liproxstatin-1 不敏感的脂质过氧化增加。我们发现 t-BuOOH 和 HO 产生不同的脂质过氧化模式,从而导致不同的细胞死亡途径,并将 t-BuOOH 鉴定为铁死亡的新型诱导剂。