Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, 29 Oxford St., Pierce Hall 321, Cambridge, Massachusetts 02138, USA.
Lab Chip. 2017 Oct 25;17(21):3692-3703. doi: 10.1039/c7lc00740j.
Microphysiological systems and organs-on-chips promise to accelerate biomedical and pharmaceutical research by providing accurate in vitro replicas of human tissue. Aside from addressing the physiological accuracy of the model tissues, there is a pressing need for improving the throughput of these platforms. To do so, scalable data acquisition strategies must be introduced. To this end, we here present an instrumented 24-well plate platform for higher-throughput studies of engineered human stem cell-derived cardiac muscle tissues that recapitulate the laminar structure of the native ventricle. In each well of the platform, an embedded flexible strain gauge provides continuous and non-invasive readout of the contractile stress and beat rate of an engineered cardiac tissue. The sensors are based on micro-cracked titanium-gold thin films, which ensure that the sensors are highly compliant and robust. We demonstrate the value of the platform for toxicology and drug-testing purposes by performing 12 complete dose-response studies of cardiac and cardiotoxic drugs. Additionally, we showcase the ability to couple the cardiac tissues with endothelial barriers. In these studies, which mimic the passage of drugs through the blood vessels to the musculature of the heart, we regulate the temporal onset of cardiac drug responses by modulating endothelial barrier permeability in vitro.
微生理系统和器官芯片有望通过提供人类组织的准确体外复制品来加速生物医学和药物研究。除了解决模型组织的生理准确性问题外,还迫切需要提高这些平台的通量。为此,必须引入可扩展的数据采集策略。为此,我们在这里提出了一种仪器化的 24 孔板平台,用于对工程化的人类干细胞衍生的心肌组织进行高通量研究,这些组织再现了天然心室的层状结构。在平台的每个孔中,嵌入式柔性应变计提供对工程化心脏组织的收缩应力和跳动率的连续和非侵入性读数。传感器基于微裂纹钛金薄膜,可确保传感器具有高弹性和耐用性。我们通过对心脏和心脏毒性药物进行 12 项完整的剂量反应研究,展示了该平台在毒理学和药物测试方面的价值。此外,我们还展示了将心脏组织与内皮屏障相耦合的能力。在这些研究中,我们模拟了药物通过血管进入心脏肌肉的过程,通过体外调节内皮屏障通透性来调节心脏药物反应的时间发生。