Suppr超能文献

相似文献

2
A microfluidic platform for the high-throughput study of pathological cardiac hypertrophy.
Lab Chip. 2017 Sep 26;17(19):3264-3271. doi: 10.1039/c7lc00415j.
3
Microfluidic heart on a chip for higher throughput pharmacological studies.
Lab Chip. 2013 Sep 21;13(18):3599-608. doi: 10.1039/c3lc50350j.
4
Biomimetic cardiac microsystems for pathophysiological studies and drug screens.
J Lab Autom. 2015 Apr;20(2):96-106. doi: 10.1177/2211068214560903. Epub 2014 Dec 18.
5
Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing.
Nat Mater. 2017 Mar;16(3):303-308. doi: 10.1038/nmat4782. Epub 2016 Oct 24.
6
Reconfigurable Microphysiological Systems for Modeling Innervation and Multitissue Interactions.
Adv Biosyst. 2020 Sep;4(9):e2000133. doi: 10.1002/adbi.202000133. Epub 2020 Aug 5.
7
Microfluidic cell chips for high-throughput drug screening.
Bioanalysis. 2016 May;8(9):921-37. doi: 10.4155/bio-2016-0028. Epub 2016 Apr 13.
8
Micro-perfusion for cardiac tissue engineering: development of a bench-top system for the culture of primary cardiac cells.
Ann Biomed Eng. 2008 May;36(5):713-25. doi: 10.1007/s10439-008-9459-2. Epub 2008 Feb 15.
9
Tissue engineering the cardiac microenvironment: Multicellular microphysiological systems for drug screening.
Adv Drug Deliv Rev. 2016 Jan 15;96:225-33. doi: 10.1016/j.addr.2015.07.004. Epub 2015 Jul 23.
10
Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model.
Biofabrication. 2010 Dec;2(4):045004. doi: 10.1088/1758-5082/2/4/045004. Epub 2010 Nov 15.

引用本文的文献

1
Advancing organ-on-chip systems: the role of microfluidics in neuro-cardiac research.
Curr Res Pharmacol Drug Discov. 2025 Jul 3;9:100227. doi: 10.1016/j.crphar.2025.100227. eCollection 2025.
3
Motion Sensing by a Highly Sensitive Nanogold Strain Sensor in a Biomimetic 3D Environment.
ACS Appl Mater Interfaces. 2024 Oct 23;16(42):56599-56610. doi: 10.1021/acsami.4c08105. Epub 2024 Sep 10.
5
Organ chips with integrated multifunctional sensors enable continuous metabolic monitoring at controlled oxygen levels.
Biosens Bioelectron. 2024 Dec 1;265:116683. doi: 10.1016/j.bios.2024.116683. Epub 2024 Aug 17.
6
Architecture design and advanced manufacturing of heart-on-a-chip: scaffolds, stimulation and sensors.
Microsyst Nanoeng. 2024 Jul 11;10:96. doi: 10.1038/s41378-024-00692-7. eCollection 2024.
8
Engineered heart tissue: Design considerations and the state of the art.
Biophys Rev (Melville). 2024 Jun 20;5(2):021308. doi: 10.1063/5.0202724. eCollection 2024 Jun.
9
Engineered platforms for mimicking cardiac development and drug screening.
Cell Mol Life Sci. 2024 Apr 25;81(1):197. doi: 10.1007/s00018-024-05231-1.
10
Soft bioelectronics for cardiac interfaces.
Biophys Rev (Melville). 2022 Jan 12;3(1):011301. doi: 10.1063/5.0069516. eCollection 2022 Mar.

本文引用的文献

1
Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites.
Science. 2016 Dec 9;354(6317):1257-1260. doi: 10.1126/science.aag2879. Epub 2016 Dec 8.
2
Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing.
Nat Mater. 2017 Mar;16(3):303-308. doi: 10.1038/nmat4782. Epub 2016 Oct 24.
5
Innovation in the pharmaceutical industry: New estimates of R&D costs.
J Health Econ. 2016 May;47:20-33. doi: 10.1016/j.jhealeco.2016.01.012. Epub 2016 Feb 12.
6
Coupling primary and stem cell-derived cardiomyocytes in an in vitro model of cardiac cell therapy.
J Cell Biol. 2016 Feb 15;212(4):389-97. doi: 10.1083/jcb.201508026. Epub 2016 Feb 8.
7
Physiologic force-frequency response in engineered heart muscle by electromechanical stimulation.
Biomaterials. 2015 Aug;60:82-91. doi: 10.1016/j.biomaterials.2015.03.055. Epub 2015 May 15.
9
Structural phenotyping of stem cell-derived cardiomyocytes.
Stem Cell Reports. 2015 Mar 10;4(3):340-7. doi: 10.1016/j.stemcr.2015.01.020. Epub 2015 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验