La Sala Giuseppina, Decherchi Sergio, De Vivo Marco, Rocchia Walter
Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
CONCEPT Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
ACS Cent Sci. 2017 Sep 27;3(9):949-960. doi: 10.1021/acscentsci.7b00211. Epub 2017 Aug 10.
The detection and characterization of binding pockets and allosteric communication in proteins is crucial for studying biological regulation and performing drug design. Nowadays, ever-longer molecular dynamics (MD) simulations are routinely used to investigate the spatiotemporal evolution of proteins. Yet, there is no computational tool that can automatically detect all the pockets and potential allosteric communication networks along these extended MD simulations. Here, we use a novel and fully automated algorithm that examines pocket formation, dynamics, and allosteric communication embedded in microsecond-long MD simulations of three pharmaceutically relevant proteins, namely, PNP, A2A, and Abl kinase. This dynamic analysis uses pocket crosstalk, defined as the temporal exchange of atoms between adjacent pockets, along the MD trajectories as a fingerprint of hidden allosteric communication networks. Importantly, this study indicates that dynamic pocket crosstalk analysis provides new mechanistic understandings on allosteric communication networks, enriching the available experimental data. Thus, our results suggest the prospective use of this unprecedented dynamic analysis to characterize transient binding pockets for structure-based drug design.
蛋白质中结合口袋和变构通讯的检测与表征对于研究生物调节和进行药物设计至关重要。如今,越来越长的分子动力学(MD)模拟被常规用于研究蛋白质的时空演化。然而,在这些长时间的MD模拟中,尚无能够自动检测所有口袋和潜在变构通讯网络的计算工具。在此,我们使用一种新颖的全自动算法,该算法研究了三种与药物相关的蛋白质(即PNP、A2A和Abl激酶)微秒级MD模拟中嵌入的口袋形成、动力学和变构通讯。这种动态分析使用口袋串扰,即沿着MD轨迹相邻口袋之间原子的时间交换,作为隐藏变构通讯网络的指纹。重要的是,这项研究表明动态口袋串扰分析为变构通讯网络提供了新的机制理解,丰富了现有的实验数据。因此,我们的结果表明这种前所未有的动态分析有望用于基于结构的药物设计中表征瞬态结合口袋。