Suppr超能文献

基于多分辨率多任务 fMRI 数据的网格网络进行性别分类。

Gender classification using mesh networks on multiresolution multitask fMRI data.

机构信息

Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA.

Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan.

出版信息

Brain Imaging Behav. 2020 Apr;14(2):460-476. doi: 10.1007/s11682-018-0021-z.

Abstract

Brain connectivity networks have been shown to represent gender differences under a number of cognitive tasks. Recently, it has been conjectured that fMRI signals decomposed into different resolutions embed different types of cognitive information. In this paper, we combine multiresolution analysis and connectivity networks to study gender differences under a variety of cognitive tasks, and propose a machine learning framework to discriminate individuals according to their gender. For this purpose, we estimate a set of brain networks, formed at different resolutions while the subjects perform different cognitive tasks. First, we decompose fMRI signals recorded under a sequence of cognitive stimuli into its frequency subbands using Discrete Wavelet Transform (DWT). Next, we represent the fMRI signals by mesh networks formed among the anatomic regions for each task experiment at each subband. The mesh networks are constructed by ensembling a set of local meshes, each of which represents the relationship of an anatomical region as a weighted linear combination of its neighbors. Then, we estimate the edge weights of each mesh by ridge regression. The proposed approach yields 2CL functional mesh networks for each subject, where C is the number of cognitive tasks and L is the number of subband signals obtained after wavelet decomposition. This approach enables one to classify gender under different cognitive tasks and different frequency subbands. The final step of the suggested framework is to fuse the complementary information of the mesh networks for each subject to discriminate the gender. We fuse the information embedded in mesh networks formed for different tasks and resolutions under a three-level fuzzy stacked generalization (FSG) architecture. In this architecture, different layers are responsible for fusion of diverse information obtained from different cognitive tasks and resolutions. In the experimental analyses, we use Human Connectome Project task fMRI dataset. Results reflect that fusing the mesh network representations computed at multiple resolutions for multiple tasks provides the best gender classification accuracy compared to the single subband task mesh networks or fusion of representations obtained using only multitask or only multiresolution data. Besides, mesh edge weights slightly outperform pairwise correlations between regions, and significantly outperform raw fMRI signals. In addition, we analyze the gender discriminative power of mesh edge weights for different tasks and resolutions.

摘要

脑连接网络在许多认知任务下表现出性别差异。最近,有人推测,在不同分辨率下分解的 fMRI 信号嵌入了不同类型的认知信息。在本文中,我们结合多分辨率分析和连接网络来研究各种认知任务下的性别差异,并提出了一种机器学习框架,根据性别对个体进行区分。为此,我们在被试执行不同认知任务时,在不同分辨率下估计了一组脑网络。首先,我们使用离散小波变换(DWT)将 fMRI 信号分解为其频带子带。接下来,我们用每个任务实验在每个子带的解剖区域之间形成的网格网络来表示 fMRI 信号。网格网络是通过组装一组局部网格来构建的,每个网格代表一个解剖区域的关系,作为其邻居的加权线性组合。然后,我们通过岭回归估计每个网格的边权重。该方法为每个被试生成 2CL 功能网格网络,其中 C 是认知任务的数量,L 是小波分解后获得的子带信号数量。这种方法可以在不同的认知任务和不同的频率子带下进行性别分类。所提出的框架的最后一步是融合每个被试的网格网络的互补信息来区分性别。我们在三级模糊堆叠泛化(FSG)架构下融合了为不同任务和分辨率形成的网格网络中的信息。在这种架构中,不同的层负责融合从不同认知任务和分辨率获得的不同信息。在实验分析中,我们使用了人类连接组计划任务 fMRI 数据集。结果表明,与单个子带任务网格网络或仅使用多任务或仅多分辨率数据获得的表示融合相比,融合在多个分辨率下为多个任务计算的网格网络表示可以提供最佳的性别分类精度。此外,网格边权重略优于区域之间的成对相关性,并且明显优于原始 fMRI 信号。此外,我们分析了网格边权重在不同任务和分辨率下的性别判别能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验