Department of Radiology, Stanford University, Stanford, CA, 94305, USA.
Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
Med Phys. 2017 Dec;44(12):6610-6620. doi: 10.1002/mp.12615. Epub 2017 Nov 6.
To study the impact of target geometrical and linac operational parameters, such as target material and thickness, electron beam size, repetition rate, and mean current on the ability of the radiotherapy treatment head to deliver high-dose-rate x-ray irradiation in the context of novel linear accelerators capable of higher repetition rates/duty cycle than conventional clinical linacs.
The depth dose in a water phantom without a flattening filter and heat deposition in an x-ray target by 10 MeV pulsed electron beams were calculated using the Monte-Carlo code MCNPX, and the transient temperature behavior of the target was simulated by ANSYS. Several parameters that affect both the dose distribution and temperature behavior were investigated. The target was tungsten with a thickness ranging from 0 to 3 mm and a copper heat remover layer. An electron beam with full width at half maximum (FWHM) between 0 and3 mm and mean current of 0.05-2 mA was used as the primary beam at repetition rates of 100, 200, 400, and 800 Hz.
For a 10 MeV electron beam with FWHM of 1 mm, pulse length of 5 μs, by using a thin tungsten target with thickness of 0.2 mm instead of 1 mm, and by employing a high repetition rate of 800 Hz instead of 100 Hz, the maximum dose rate delivered can increase two times from 0.57 to 1.16 Gy/s. In this simple model, the limiting factor on dose rate is the copper heat remover's softening temperature, which was considered to be 500°C in our study.
A high dose rate can be obtained by employing thin targets together with high repetition rate electron beams enabled by novel linac designs, whereas the benefit of thin targets is marginal at conventional repetition rates. Next generation linacs used to increase dose rate need different target designs compared to conventional linacs.
研究目标几何形状和直线加速器操作参数(例如靶材和厚度、电子束尺寸、重复率和平均电流)对放疗头在新型直线加速器中输送高剂量率 X 射线照射的能力的影响,这些新型直线加速器的重复率/占空比高于传统临床直线加速器。
使用蒙特卡罗代码 MCNPX 计算水模中无平坦化滤波器的深度剂量和 10 MeV 脉冲电子束在 X 射线靶中的热沉积,并通过 ANSYS 模拟靶的瞬态温度行为。研究了影响剂量分布和温度行为的几个参数。靶材为钨,厚度为 0 至 3 毫米,还有一层铜热清除层。使用半高全宽(FWHM)为 0 至 3 毫米、平均电流为 0.05-2 mA 的电子束,在重复率为 100、200、400 和 800 Hz 的情况下作为初级电子束。
对于 FWHM 为 1 mm、脉冲长度为 5 μs 的 10 MeV 电子束,使用厚度为 0.2 mm 的薄钨靶代替 1 mm 的厚钨靶,并采用 800 Hz 的高重复率代替 100 Hz 的重复率,最大剂量率可以从 0.57 增加到 1.16 Gy/s。在这个简单的模型中,剂量率的限制因素是铜热清除器的软化温度,在我们的研究中,该温度被认为是 500°C。
通过采用新型直线加速器设计的薄靶和高重复率电子束,可以获得高剂量率,而在传统重复率下,薄靶的优势并不明显。与传统直线加速器相比,用于提高剂量率的下一代直线加速器需要不同的靶设计。