Muth Doreen, Meyer Benjamin, Niemeyer Daniela, Schroeder Simon, Osterrieder Nikolaus, Müller Marcel Alexander, Drosten Christian
Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.
J Gen Virol. 2017 Oct;98(10):2461-2469. doi: 10.1099/jgv.0.000919.
Middle East respiratory syndrome coronavirus (MERS-CoV) is a high-priority pathogen in pandemic preparedness research. Reverse genetics systems are a valuable tool to study viral replication and pathogenesis, design attenuated vaccines and create defined viral assay systems for applications such as antiviral screening. Here we present a novel reverse genetics system for MERS-CoV that involves maintenance of the full-length viral genome as a cDNA copy inserted in a bacterial artificial chromosome amenable to manipulation by homologue recombination, based on the bacteriophage λ Red recombination system. Based on a full-length infectious MERS-CoV cDNA clone, optimal genomic insertion sites and expression strategies for GFP were identified and used to generate a reporter MERS-CoV expressing GFP in addition to the complete set of viral proteins. GFP was genetically fused to the N-terminal part of protein 4a, from which it is released during translation via porcine teschovirus 2A peptide activity. The resulting reporter virus achieved titres nearly identical to the wild-type virus 48 h after infection of Vero cells at m.o.i. 0.001 (1×10 p.f.u. ml and 3×10 p.f.u. ml, respectively), and allowed determination of the 50 % inhibitory concentration for the known MERS-CoV inhibitor cyclosporine A based on fluorescence readout. The resulting value was 2.41 µM, which corresponds to values based on wild-type virus. The reverse genetics system described herein can be efficiently mutated by Red-mediated recombination. The GFP-expressing reporter virus contains the full set of MERS-CoV proteins and achieves wild-type titres in cell culture.
中东呼吸综合征冠状病毒(MERS-CoV)是大流行防范研究中的重点病原体。反向遗传学系统是研究病毒复制和发病机制、设计减毒疫苗以及创建用于抗病毒筛选等应用的特定病毒检测系统的重要工具。在此,我们展示了一种用于MERS-CoV的新型反向遗传学系统,该系统基于噬菌体λ Red重组系统,将全长病毒基因组作为cDNA拷贝维持在细菌人工染色体中,便于通过同源重组进行操作。基于全长感染性MERS-CoV cDNA克隆,确定了绿色荧光蛋白(GFP)的最佳基因组插入位点和表达策略,并用于生成除全套病毒蛋白外还表达GFP的报告型MERS-CoV。GFP与蛋白4a的N端部分进行基因融合,在翻译过程中通过猪捷申病毒2A肽的活性从该部分释放出来。在以0.001的感染复数(m.o.i.)感染Vero细胞48小时后,所得报告病毒的滴度与野生型病毒几乎相同(分别为1×10 p.f.u./ml和3×10 p.f.u./ml),并且基于荧光读数能够确定已知的MERS-CoV抑制剂环孢素A的50%抑制浓度。所得值为2.41 μM,与基于野生型病毒的值相对应。本文所述的反向遗传学系统可通过Red介导的重组有效地进行突变。表达GFP的报告病毒包含全套MERS-CoV蛋白,并在细胞培养中达到野生型滴度。