Suppr超能文献

一种基于深度卷积神经网络的多脑转移瘤立体定向放射外科自动勾画策略。

A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery.

作者信息

Liu Yan, Stojadinovic Strahinja, Hrycushko Brian, Wardak Zabi, Lau Steven, Lu Weiguo, Yan Yulong, Jiang Steve B, Zhen Xin, Timmerman Robert, Nedzi Lucien, Gu Xuejun

机构信息

School of Electrical Engineering and Information, Sichuan University, Chengdu, Sichuan, China.

Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America.

出版信息

PLoS One. 2017 Oct 6;12(10):e0185844. doi: 10.1371/journal.pone.0185844. eCollection 2017.

Abstract

Accurate and automatic brain metastases target delineation is a key step for efficient and effective stereotactic radiosurgery (SRS) treatment planning. In this work, we developed a deep learning convolutional neural network (CNN) algorithm for segmenting brain metastases on contrast-enhanced T1-weighted magnetic resonance imaging (MRI) datasets. We integrated the CNN-based algorithm into an automatic brain metastases segmentation workflow and validated on both Multimodal Brain Tumor Image Segmentation challenge (BRATS) data and clinical patients' data. Validation on BRATS data yielded average DICE coefficients (DCs) of 0.75±0.07 in the tumor core and 0.81±0.04 in the enhancing tumor, which outperformed most techniques in the 2015 BRATS challenge. Segmentation results of patient cases showed an average of DCs 0.67±0.03 and achieved an area under the receiver operating characteristic curve of 0.98±0.01. The developed automatic segmentation strategy surpasses current benchmark levels and offers a promising tool for SRS treatment planning for multiple brain metastases.

摘要

准确且自动的脑转移瘤靶区勾画是高效立体定向放射外科(SRS)治疗计划的关键步骤。在这项工作中,我们开发了一种深度学习卷积神经网络(CNN)算法,用于在对比增强T1加权磁共振成像(MRI)数据集上分割脑转移瘤。我们将基于CNN的算法集成到自动脑转移瘤分割工作流程中,并在多模态脑肿瘤图像分割挑战赛(BRATS)数据和临床患者数据上进行了验证。在BRATS数据上的验证结果显示,肿瘤核心区域的平均DICE系数(DCs)为0.75±0.07,强化肿瘤区域为0.81±0.04,这超过了2015年BRATS挑战赛中的大多数技术。患者病例的分割结果显示,平均DCs为0.67±0.03,受试者工作特征曲线下面积为0.98±0.01。所开发的自动分割策略超越了当前的基准水平,为多发性脑转移瘤的SRS治疗计划提供了一个有前景的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2887/5630188/bbcd65e39df3/pone.0185844.g001.jpg

相似文献

1
A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery.
PLoS One. 2017 Oct 6;12(10):e0185844. doi: 10.1371/journal.pone.0185844. eCollection 2017.
2
Automatic metastatic brain tumor segmentation for stereotactic radiosurgery applications.
Phys Med Biol. 2016 Dec 21;61(24):8440-8461. doi: 10.1088/0031-9155/61/24/8440. Epub 2016 Nov 15.
3
Brain tumor segmentation using holistically nested neural networks in MRI images.
Med Phys. 2017 Oct;44(10):5234-5243. doi: 10.1002/mp.12481. Epub 2017 Aug 20.
4
Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network.
Comput Biol Med. 2018 Apr 1;95:43-54. doi: 10.1016/j.compbiomed.2018.02.004. Epub 2018 Feb 9.
6
Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI.
J Magn Reson Imaging. 2020 Jan;51(1):175-182. doi: 10.1002/jmri.26766. Epub 2019 May 2.
7
AdaptAhead Optimization Algorithm for Learning Deep CNN Applied to MRI Segmentation.
J Digit Imaging. 2019 Feb;32(1):105-115. doi: 10.1007/s10278-018-0107-6.
9
Brain tumor segmentation in multi-spectral MRI using convolutional neural networks (CNN).
Microsc Res Tech. 2018 Apr;81(4):419-427. doi: 10.1002/jemt.22994. Epub 2018 Jan 22.
10
Prediction of Response to Stereotactic Radiosurgery for Brain Metastases Using Convolutional Neural Networks.
Anticancer Res. 2018 Sep;38(9):5437-5445. doi: 10.21873/anticanres.12875.

引用本文的文献

4
5
Semi-Supervised Learning Allows for Improved Segmentation With Reduced Annotations of Brain Metastases Using Multicenter MRI Data.
J Magn Reson Imaging. 2025 Jun;61(6):2469-2479. doi: 10.1002/jmri.29686. Epub 2025 Jan 10.
6
Where Does Auto-Segmentation for Brain Metastases Radiosurgery Stand Today?
Bioengineering (Basel). 2024 May 3;11(5):454. doi: 10.3390/bioengineering11050454.
7
Artificial-intelligence-driven measurements of brain metastases' response to SRS compare favorably with current manual standards of assessment.
Neurooncol Adv. 2024 Feb 19;6(1):vdae015. doi: 10.1093/noajnl/vdae015. eCollection 2024 Jan-Dec.
8
Deep learning for automated segmentation in radiotherapy: a narrative review.
Br J Radiol. 2024 Jan 23;97(1153):13-20. doi: 10.1093/bjr/tqad018.
10
Automatically tracking brain metastases after stereotactic radiosurgery.
Phys Imaging Radiat Oncol. 2023 Jun 1;27:100452. doi: 10.1016/j.phro.2023.100452. eCollection 2023 Jul.

本文引用的文献

2
Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation.
Med Image Anal. 2017 Feb;36:61-78. doi: 10.1016/j.media.2016.10.004. Epub 2016 Oct 29.
3
Automatic metastatic brain tumor segmentation for stereotactic radiosurgery applications.
Phys Med Biol. 2016 Dec 21;61(24):8440-8461. doi: 10.1088/0031-9155/61/24/8440. Epub 2016 Nov 15.
4
Tumor or abnormality identification from magnetic resonance images using statistical region fusion based segmentation.
Magn Reson Imaging. 2016 Nov;34(9):1292-1304. doi: 10.1016/j.mri.2016.07.002. Epub 2016 Jul 28.
5
Automated Robust Image Segmentation: Level Set Method Using Nonnegative Matrix Factorization with Application to Brain MRI.
Bull Math Biol. 2016 Jul;78(7):1450-76. doi: 10.1007/s11538-016-0190-0. Epub 2016 Jul 14.
6
Pre-treatment factors associated with detecting additional brain metastases at stereotactic radiosurgery.
J Neurooncol. 2016 Jun;128(2):251-7. doi: 10.1007/s11060-016-2103-3. Epub 2016 Mar 10.
8
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).
IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024. doi: 10.1109/TMI.2014.2377694. Epub 2014 Dec 4.
9
State of the art survey on MRI brain tumor segmentation.
Magn Reson Imaging. 2013 Oct;31(8):1426-38. doi: 10.1016/j.mri.2013.05.002. Epub 2013 Jun 20.
10
A survey of MRI-based medical image analysis for brain tumor studies.
Phys Med Biol. 2013 Jul 7;58(13):R97-129. doi: 10.1088/0031-9155/58/13/R97. Epub 2013 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验