Suppr超能文献

使用卷积神经网络(CNN)进行多光谱磁共振成像中的脑肿瘤分割。

Brain tumor segmentation in multi-spectral MRI using convolutional neural networks (CNN).

作者信息

Iqbal Sajid, Ghani M Usman, Saba Tanzila, Rehman Amjad

机构信息

Department of Computer Science and Engineering, University of Engineering and Technology, Lahore, Pakistan.

Department of Computer Science Bahauddin Zakariya University Multan Pakistan.

出版信息

Microsc Res Tech. 2018 Apr;81(4):419-427. doi: 10.1002/jemt.22994. Epub 2018 Jan 22.

Abstract

A tumor could be found in any area of the brain and could be of any size, shape, and contrast. There may exist multiple tumors of different types in a human brain at the same time. Accurate tumor area segmentation is considered primary step for treatment of brain tumors. Deep Learning is a set of promising techniques that could provide better results as compared to nondeep learning techniques for segmenting timorous part inside a brain. This article presents a deep convolutional neural network (CNN) to segment brain tumors in MRIs. The proposed network uses BRATS segmentation challenge dataset which is composed of images obtained through four different modalities. Accordingly, we present an extended version of existing network to solve segmentation problem. The network architecture consists of multiple neural network layers connected in sequential order with the feeding of Convolutional feature maps at the peer level. Experimental results on BRATS 2015 benchmark data thus show the usability of the proposed approach and its superiority over the other approaches in this area of research.

摘要

肿瘤可能出现在大脑的任何区域,大小、形状各异,对比度也不尽相同。人脑内可能同时存在多种不同类型的肿瘤。准确的肿瘤区域分割被视为脑肿瘤治疗的首要步骤。深度学习是一组很有前景的技术,与非深度学习技术相比,它在分割脑内肿瘤部分时能提供更好的结果。本文提出了一种深度卷积神经网络(CNN)来分割磁共振成像(MRI)中的脑肿瘤。所提出的网络使用了BRATS分割挑战数据集,该数据集由通过四种不同模态获得的图像组成。因此,我们提出了现有网络的扩展版本来解决分割问题。网络架构由多个神经网络层按顺序连接组成,在同级水平上输入卷积特征图。对BRATS 2015基准数据的实验结果表明了所提方法的可用性及其在该研究领域相对于其他方法的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验