Suppr超能文献

深度学习在放射治疗中的自动分割:叙述性综述。

Deep learning for automated segmentation in radiotherapy: a narrative review.

机构信息

Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris Cité, Paris, 75015, France.

INSERM UMR 1138, Centre de Recherche des Cordeliers, Paris, 75006, France.

出版信息

Br J Radiol. 2024 Jan 23;97(1153):13-20. doi: 10.1093/bjr/tqad018.

Abstract

The segmentation of organs and structures is a critical component of radiation therapy planning, with manual segmentation being a laborious and time-consuming task. Interobserver variability can also impact the outcomes of radiation therapy. Deep neural networks have recently gained attention for their ability to automate segmentation tasks, with convolutional neural networks (CNNs) being a popular approach. This article provides a descriptive review of the literature on deep learning (DL) techniques for segmentation in radiation therapy planning. This review focuses on five clinical sub-sites and finds that U-net is the most commonly used CNN architecture. The studies using DL for image segmentation were included in brain, head and neck, lung, abdominal, and pelvic cancers. The majority of DL segmentation articles in radiation therapy planning have concentrated on normal tissue structures. N-fold cross-validation was commonly employed, without external validation. This research area is expanding quickly, and standardization of metrics and independent validation are critical to benchmarking and comparing proposed methods.

摘要

器官和结构的分割是放射治疗计划的一个关键组成部分,手动分割是一项繁琐且耗时的任务。观察者间的变异性也会影响放射治疗的结果。深度神经网络最近因其自动化分割任务的能力而受到关注,卷积神经网络(CNN)是一种流行的方法。本文对放射治疗计划中用于分割的深度学习(DL)技术的文献进行了描述性综述。本综述重点介绍了五个临床亚部位,发现 U-net 是最常用的 CNN 架构。使用 DL 进行图像分割的研究包括脑、头颈部、肺、腹部和骨盆癌症。放射治疗计划中使用 DL 进行分割的大多数文章都集中在正常组织结构上。通常采用 N 折交叉验证,而没有外部验证。该研究领域正在迅速扩展,度量标准的标准化和独立验证对于基准测试和比较提出的方法至关重要。

相似文献

1
Deep learning for automated segmentation in radiotherapy: a narrative review.
Br J Radiol. 2024 Jan 23;97(1153):13-20. doi: 10.1093/bjr/tqad018.
2
Deep learning for segmentation in radiation therapy planning: a review.
J Med Imaging Radiat Oncol. 2021 Aug;65(5):578-595. doi: 10.1111/1754-9485.13286. Epub 2021 Jul 26.
3
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.
Cancer Biomark. 2025 Mar;42(3):18758592241311184. doi: 10.1177/18758592241311184. Epub 2025 Apr 4.
10

引用本文的文献

本文引用的文献

1
A clinical evaluation of the performance of five commercial artificial intelligence contouring systems for radiotherapy.
Front Oncol. 2023 Aug 4;13:1213068. doi: 10.3389/fonc.2023.1213068. eCollection 2023.
2
Automated detection and segmentation of non-small cell lung cancer computed tomography images.
Nat Commun. 2022 Jun 14;13(1):3423. doi: 10.1038/s41467-022-30841-3.
5
Automated contour propagation of the prostate from pCT to CBCT images via deep unsupervised learning.
Med Phys. 2021 Apr;48(4):1764-1770. doi: 10.1002/mp.14755. Epub 2021 Mar 1.
6
Evaluation of measures for assessing time-saving of automatic organ-at-risk segmentation in radiotherapy.
Phys Imaging Radiat Oncol. 2019 Dec 17;13:1-6. doi: 10.1016/j.phro.2019.12.001. eCollection 2020 Jan.
9
Auto-segmentations by convolutional neural network in cervical and anorectal cancer with clinical structure sets as the ground truth.
Clin Transl Radiat Oncol. 2020 Sep 14;25:37-45. doi: 10.1016/j.ctro.2020.09.004. eCollection 2020 Nov.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验