Suppr超能文献

从(n,m)单壁碳纳米管的不对称化学掺杂中观察电子转移的马库斯反转区。

Observation of the Marcus Inverted Region of Electron Transfer from Asymmetric Chemical Doping of Pristine (n,m) Single-Walled Carbon Nanotubes.

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.

出版信息

J Am Chem Soc. 2017 Nov 1;139(43):15328-15336. doi: 10.1021/jacs.7b04314. Epub 2017 Oct 20.

Abstract

The concept of electrical energy generation based on asymmetric chemical doping of single-walled carbon nanotube (SWNT) papers is presented. We explore 27 small, organic, electron-acceptor molecules that are shown to tune the output open-circuit voltage (V) across three types of pristine SWNT papers with varying (n,m) chirality distributions. A considerable enhancement in the observed V, from 80 to 440 mV, is observed for SWNT/molecule acceptor pairs that have molecular volume below 120 Å and lowest unoccupied molecular orbital (LUMO) energies centered around -0.8 eV. The electron transfer (ET) rate constants driving the V generation are shown to vary with the chirality-associated Marcus theory, suggesting that the energy gaps between SWNT and the LUMO of acceptor molecules dictate the ET process. When the ET rate constants and the maximum V are plotted versus the LUMO energy of the acceptor organic molecule, volcano-shaped dependencies, characteristic of the Marcus inverted region, are apparent for three distinct sources of SWNT papers with modes in diameter distributions of 0.95, 0.83, and 0.75 nm. This observation, where the ET driving force exceeds reorganization energies, allows for an estimation of the outer-sphere reorganization energies with values as low as 100 meV for the (8,7) SWNT, consistent with a proposed image-charge modified Born energy model. These results expand the fundamental understanding of ET transfer processes in SWNT and allow for an accurate calculation of energy generation through asymmetric doping for device applications.

摘要

基于单壁碳纳米管(SWNT)纸的不对称化学掺杂产生电能的概念被提出。我们探索了 27 种小的、有机的电子受体分子,这些分子被证明可以调节三种具有不同(n,m)手性分布的原始 SWNT 纸的开路电压(V)输出。对于分子体积低于 120 Å 且最低未占据分子轨道(LUMO)能量集中在-0.8 eV 左右的 SWNT/分子受体对,观察到的 V 显著增强,从 80 mV 增强到 440 mV。驱动 V 产生的电子转移(ET)速率常数与手性相关的 Marcus 理论一致,表明 SWNT 和受体分子的 LUMO 之间的能隙决定了 ET 过程。当 ET 速率常数和最大 V 与受体有机分子的 LUMO 能量作图时,对于三种具有直径分布模式为 0.95、0.83 和 0.75nm 的不同来源的 SWNT 纸,明显出现了类似于 Marcus 反转区域的火山形依赖性。这种观察结果,即 ET 驱动力超过重组能,允许对外球重组能进行估计,对于(8,7)SWNT 值低至 100 meV,与提出的图像电荷修正 Born 能量模型一致。这些结果扩展了 SWNT 中 ET 转移过程的基本理解,并允许通过非对称掺杂进行准确计算以用于器件应用中的能量产生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验