Department of Neurology, Stanford University School of Medicine, Stanford, California, 94305.
Dev Neurobiol. 2018 Feb;78(2):123-135. doi: 10.1002/dneu.22541. Epub 2017 Oct 17.
Human central nervous system myelin development extends well into the fourth decade of life, and this protracted period underscores the potential for experience to modulate myelination. The concept of myelin plasticity implies adaptability in myelin structure and function in response to experiences during development and beyond. Mounting evidence supports this concept of neuronal activity-regulated changes in myelin-forming cells, including oligodendrocyte precursor cell proliferation, oligodendrogenesis and modulation of myelin microstructure. In healthy individuals, myelin plasticity in associative white matter structures of the brain is implicated in learning and motor function in both rodents and humans. Activity-dependent changes in myelin-forming cells may influence the function of neural networks that depend on the convergence of numerous neural signals on both a temporal and spatial scale. However, dysregulation of myelin plasticity can disadvantageously alter myelin microstructure and result in aberrant circuit function or contribute to pathological cell proliferation. Emerging roles for myelin plasticity in normal neurological function and in disease are discussed. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 123-135, 2018.
人类中枢神经系统髓鞘的发育可以持续到生命的第四个十年,这一漫长的过程强调了经验在调节髓鞘形成方面的潜力。髓鞘可塑性的概念意味着髓鞘结构和功能在发育过程中和之后可以根据经验进行适应。越来越多的证据支持神经元活性调节髓鞘形成细胞变化的这一概念,包括少突胶质前体细胞增殖、少突胶质形成和髓鞘微观结构的调节。在健康个体中,大脑联合白质结构中的髓鞘可塑性与啮齿类动物和人类的学习和运动功能有关。髓鞘形成细胞的活性依赖性变化可能会影响依赖于大量神经信号在时间和空间尺度上汇聚的神经网络的功能。然而,髓鞘可塑性的失调会不利地改变髓鞘的微观结构,并导致异常的回路功能,或者导致病理性细胞增殖。本文讨论了髓鞘可塑性在正常神经功能和疾病中的新作用。© 2017 Wiley Periodicals, Inc. 发育神经生物学 78: 123-135, 2018.