Suppr超能文献

通过氢气吸附作用在 Au(111)表面上改变铁酞菁的自旋状态。

Spin switch in iron phthalocyanine on Au(111) surface by hydrogen adsorption.

机构信息

Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.

Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

出版信息

J Chem Phys. 2017 Oct 7;147(13):134701. doi: 10.1063/1.4996970.

Abstract

The manipulation of spin states at the molecular scale is of fundamental importance for the development of molecular spintronic devices. One of the feasible approaches for the modification of a molecular spin state is through the adsorption of certain specific atoms or molecules including H, NO, CO, NH, and O. In this paper, we demonstrate that the local spin state of an individual iron phthalocyanine (FePc) molecule adsorbed on an Au(111) surface exhibits controllable switching by hydrogen adsorption, as evidenced by using first-principles calculations based on density functional theory. Our theoretical calculations indicate that different numbers of hydrogen adsorbed at the pyridinic N sites of the FePc molecule largely modify the structural and electronic properties of the FePc/Au(111) composite by forming extra N-H bonds. In particular, the adsorption of one or up to three hydrogen atoms induces a redistribution of charge (spin) density within the FePc molecule, and hence a switching to a low spin state (S = 1/2) from an intermediate spin state (S = 1) is achieved, while the adsorption of four hydrogen atoms distorts the molecular conformation by increasing Fe-N bond lengths in FePc and thus breaks the ligand field exerted on the Fe 3d orbitals via stronger hybridization with the substrate, leading to an opposite switching to a high-spin state (S = 2). These findings obtained from the theoretical simulations could be useful for experimental manipulation or design of single-molecule spintronic devices.

摘要

在分子尺度上操纵自旋态对于分子自旋电子器件的发展至关重要。一种可行的方法是通过吸附某些特定的原子或分子来修饰分子的自旋状态,包括 H、NO、CO、NH 和 O。在本文中,我们通过基于密度泛函理论的第一性原理计算证明,吸附在 Au(111)表面上的单个铁酞菁(FePc)分子的局部自旋态可以通过氢吸附来进行可控切换。我们的理论计算表明,不同数量的氢原子吸附在 FePc 分子的吡啶 N 位上,通过形成额外的 N-H 键,极大地改变了 FePc/Au(111)复合材料的结构和电子性质。特别是,吸附一个或最多三个氢原子会导致 FePc 分子内的电荷(自旋)密度重新分布,从而实现从中自旋态(S=1)到低自旋态(S=1/2)的转换,而吸附四个氢原子会通过增加 FePc 中的 Fe-N 键长来扭曲分子构象,并通过与衬底更强的杂化作用打破配体场对 Fe 3d 轨道的作用,从而导致相反的高自旋态(S=2)转换。这些从理论模拟中得到的发现可能对单分子自旋电子器件的实验操作或设计有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验