Suppr超能文献

单分子结中的可调谐巨磁电阻

Tunable giant magnetoresistance in a single-molecule junction.

作者信息

Yang Kai, Chen Hui, Pope Thomas, Hu Yibin, Liu Liwei, Wang Dongfei, Tao Lei, Xiao Wende, Fei Xiangmin, Zhang Yu-Yang, Luo Hong-Gang, Du Shixuan, Xiang Tao, Hofer Werner A, Gao Hong-Jun

机构信息

Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100190, Beijing, China.

School of Natural and Environmental Sciences, Newcastle University, Newcastle, NE1 7RU, UK.

出版信息

Nat Commun. 2019 Aug 9;10(1):3599. doi: 10.1038/s41467-019-11587-x.

Abstract

Controlling electronic transport through a single-molecule junction is crucial for molecular electronics or spintronics. In magnetic molecular devices, the spin degree-of-freedom can be used to this end since the magnetic properties of the magnetic ion centers fundamentally impact the transport through the molecules. Here we demonstrate that the electron pathway in a single-molecule device can be selected between two molecular orbitals by varying a magnetic field, giving rise to a tunable anisotropic magnetoresistance up to 93%. The unique tunability of the electron pathways is due to the magnetic reorientation of the transition metal center, resulting in a re-hybridization of molecular orbitals. We obtain the tunneling electron pathways by Kondo effect, which manifests either as a peak or a dip line shape. The energy changes of these spin-reorientations are remarkably low and less than one millielectronvolt. The large tunable anisotropic magnetoresistance could be used to control electronic transport in molecular spintronics.

摘要

控制单分子结中的电子输运对于分子电子学或自旋电子学至关重要。在磁性分子器件中,自旋自由度可用于此目的,因为磁性离子中心的磁性特性从根本上影响通过分子的输运。在此,我们证明通过改变磁场,可以在两个分子轨道之间选择单分子器件中的电子路径,从而产生高达93%的可调谐各向异性磁阻。电子路径的独特可调谐性源于过渡金属中心的磁性重新取向,导致分子轨道的重新杂化。我们通过近藤效应获得隧穿电子路径,其表现为峰形或谷形线形。这些自旋重新取向的能量变化非常低,小于一毫电子伏特。大的可调谐各向异性磁阻可用于控制分子自旋电子学中的电子输运。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ab/6689026/442f609343ca/41467_2019_11587_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验