Suppr超能文献

航空图像的分类图像捕获了双目视差的视觉专业知识,以及来自上方的照明先验。

Classification images for aerial images capture visual expertise for binocular disparity and a prior for lighting from above.

机构信息

School of Psychology, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK.

Aston Laboratory for Immersive Virtual Environments, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK.

出版信息

J Vis. 2024 Apr 1;24(4):11. doi: 10.1167/jov.24.4.11.

Abstract

Using a novel approach to classification images (CIs), we investigated the visual expertise of surveyors for luminance and binocular disparity cues simultaneously after screening for stereoacuity. Stereoscopic aerial images of hedges and ditches were classified in 10,000 trials by six trained remote sensing surveyors and six novices. Images were heavily masked with luminance and disparity noise simultaneously. Hedge and ditch images had reversed disparity on around half the trials meaning hedges became ditch-like and vice versa. The hedge and ditch images were also flipped vertically on around half the trials, changing the direction of the light source and completing a 2 × 2 × 2 stimulus design. CIs were generated by accumulating the noise textures associated with "hedge" and "ditch" classifications, respectively, and subtracting one from the other. Typical CIs had a central peak with one or two negative side-lobes. We found clear differences in the amplitudes and shapes of perceptual templates across groups and noise-type, with experts prioritizing binocular disparity and using this more effectively. Contrariwise, novices used luminance cues more than experts meaning that task motivation alone could not explain group differences. Asymmetries in the luminance CIs revealed individual differences for lighting interpretation, with experts less prone to assume lighting from above, consistent with their training on aerial images of UK scenes lit by a southerly sun. Our results show that (i) dual noise in images can be used to produce simultaneous CI pairs, (ii) expertise for disparity cues does not depend on stereoacuity, (iii) CIs reveal the visual strategies developed by experts, (iv) top-down perceptual biases can be overcome with long-term learning effects, and (v) CIs have practical potential for directing visual training.

摘要

我们采用一种新颖的分类图像(CI)方法,在筛选立体视锐度后,同时研究了测量员对亮度和双目视差线索的视觉专业知识。通过 6 名受过训练的遥感测量员和 6 名新手,对 10000 次带有亮度和视差噪声的对冲沟和沟渠的立体航空图像进行分类。对冲和沟渠的图像在大约一半的试验中具有反转的视差,这意味着对冲变成了沟渠状,反之亦然。大约一半的试验中,对冲和沟渠的图像也垂直翻转,改变了光源的方向,完成了一个 2×2×2 的刺激设计。CI 是通过分别积累与“对冲”和“沟渠”分类相关的噪声纹理,并从另一个中减去一个来生成的。典型的 CI 有一个中央峰,有一个或两个负侧瓣。我们发现,不同组和噪声类型之间的感知模板的幅度和形状存在明显差异,专家更重视双目视差,并更有效地利用它。相反,新手比专家更依赖亮度线索,这意味着仅靠任务动机并不能解释组间差异。亮度 CI 的不对称性揭示了个体在灯光解释方面的差异,专家不太可能假设灯光来自上方,这与他们在英国南部阳光照射的航空图像上的训练一致。我们的研究结果表明:(i)图像中的双重噪声可用于生成同时的 CI 对;(ii)视差线索的专业知识不依赖于立体视锐度;(iii)CI 揭示了专家开发的视觉策略;(iv)自上而下的感知偏差可以通过长期的学习效果来克服;(v)CI 具有指导视觉训练的实际潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70e5/11019598/03d67d3a7980/jovi-24-4-11-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验