Nash Anthony, Rhodes Johanna
Department of Chemistry, University College London, London, United Kingdom.
Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom.
Med Mycol. 2018 Apr 1;56(3):361-373. doi: 10.1093/mmy/myx056.
Azole antifungal drugs target CYP51A in Aspergillus fumigatus by binding with the active site of the protein, blocking ergosterol biosynthesis. Resistance to azole antifungal drugs is now common, with a leucine to histidine amino acid substitution at position 98 the most frequent, predominantly conferring resistance to itraconazole, although cross-resistance has been reported in conjunction with other mutations. In this study, we create a homology model of CYP51A using a recently published crystal structure of the paralog protein CYP51B. The derived structures, wild type, and L98H mutant are positioned within a lipid membrane bilayer and subjected to molecular dynamics simulations in order improve the accuracy of both models. The structural analysis from our simulations suggests a decrease in active site surface from the formation of hydrogen bonds between the histidine substitution and neighboring polar side chains, potentially preventing the binding of azole drugs. This study yields a biologically relevant structure and set of dynamics of the A. fumigatus Lanosterol 14 alpha-demethylase enzyme and provides further insight into azole antifungal drug resistance.
唑类抗真菌药物通过与烟曲霉中CYP51A蛋白的活性位点结合来靶向该蛋白,从而阻断麦角甾醇的生物合成。目前,对唑类抗真菌药物的耐药性很常见,其中第98位氨基酸由亮氨酸替换为组氨酸最为频繁,主要导致对伊曲康唑耐药,不过据报道,与其他突变同时存在时会出现交叉耐药。在本研究中,我们利用最近发表的旁系同源蛋白CYP51B的晶体结构创建了CYP51A的同源模型。将得到的野生型和L98H突变体结构置于脂质膜双层中,并进行分子动力学模拟,以提高两个模型的准确性。我们模拟的结构分析表明,组氨酸替换与相邻极性侧链之间形成氢键导致活性位点表面减少,这可能会阻止唑类药物的结合。本研究得出了烟曲霉羊毛甾醇14α-去甲基酶的生物学相关结构和动力学数据集,并为唑类抗真菌药物耐药性提供了进一步的见解。