NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Simula Research Laboratory, Lysaker, Norway.
Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway.
J Neurosci Methods. 2018 Jan 1;293:264-283. doi: 10.1016/j.jneumeth.2017.10.007. Epub 2017 Oct 7.
Recent progress in electrophysiological and optical methods for neuronal recordings provides vast amounts of high-resolution data. In parallel, the development of computer technology has allowed simulation of ever-larger neuronal circuits. A challenge in taking advantage of these developments is the construction of single-cell and network models in a way that faithfully reproduces neuronal biophysics with subcellular level of details while keeping the simulation costs at an acceptable level.
In this work, we develop and apply an automated, stepwise method for fitting a neuron model to data with fine spatial resolution, such as that achievable with voltage sensitive dyes (VSDs) and Ca imaging.
We apply our method to simulated data from layer 5 pyramidal cells (L5PCs) and construct a model with reduced neuronal morphology. We connect the reduced-morphology neurons into a network and validate against simulated data from a high-resolution L5PC network model.
Our approach combines features from several previously applied model-fitting strategies. The reduced-morphology neuron model obtained using our approach reliably reproduces the membrane-potential dynamics across the dendrites as predicted by the full-morphology model.
The network models produced using our method are cost-efficient and predict that interconnected L5PCs are able to amplify delta-range oscillatory inputs across a large range of network sizes and topologies, largely due to the medium after hyperpolarization mediated by the Ca-activated SK current.
近年来,神经记录的电生理和光学方法取得了进展,提供了大量高分辨率的数据。与此同时,计算机技术的发展也使得更大规模的神经元电路模拟成为可能。利用这些发展的一个挑战是,以一种能够在亚细胞水平上忠实再现神经元生物物理学特性的方式构建单细胞和网络模型,同时将模拟成本控制在可接受的水平。
在这项工作中,我们开发并应用了一种自动、逐步的方法,用于拟合具有精细空间分辨率的数据的神经元模型,例如使用电压敏感染料(VSD)和钙成像技术获得的数据。
我们将我们的方法应用于来自第 5 层锥体神经元(L5PC)的模拟数据,并构建了一个具有简化神经元形态的模型。我们将简化形态的神经元连接成网络,并针对来自高分辨率 L5PC 网络模型的模拟数据进行验证。
我们的方法结合了几种以前应用的模型拟合策略的特点。使用我们的方法获得的简化形态神经元模型可靠地再现了全形态模型预测的整个树突的膜电位动力学。
使用我们的方法生成的网络模型具有成本效益,并且预测相互连接的 L5PC 能够在很大的网络规模和拓扑范围内放大 delta 范围的振荡输入,这主要归因于 Ca 激活的 SK 电流介导的后超极化中介的介质。