Suppr超能文献

树突棘的头部并没有被棘颈部与母树突的膜电位信号隔开。

Cortical dendritic spine heads are not electrically isolated by the spine neck from membrane potential signals in parent dendrites.

机构信息

Department of Cellular and Molecular Physiology.

出版信息

Cereb Cortex. 2014 Feb;24(2):385-95. doi: 10.1093/cercor/bhs320. Epub 2012 Oct 10.

Abstract

The evidence for an important hypothesis that cortical spine morphology might participate in modifying synaptic efficacy that underlies plasticity and possibly learning and memory mechanisms is inconclusive. Both theory and experiments suggest that the transfer of excitatory postsynaptic potential signals from spines to parent dendrites depends on the spine neck morphology and resistance. Furthermore, modeling of signal transfer in the opposite direction predicts that synapses on spine heads are not electrically isolated from voltages in the parent dendrite. In sharp contrast to this theoretical prediction, one of a very few measurements of electrical signals from spines reported that slow hyperpolarizing membrane potential changes are attenuated considerably by the spine neck as they spread from dendrites to synapses on spine heads. This result challenges our understanding of the electrical behavior of spines at a fundamental level. To re-examine the specific question of the transfer of dendritic signals to synapses of spines, we took advantage of a high-sensitivity Vm-imaging technique and carried out optical measurements of electrical signals from 4 groups of spines with different neck length and simultaneously from parent dendrites. The results show that spine neck does not filter membrane potential signals as they spread from the dendrites into the spine heads.

摘要

皮质突形态可能参与调节突触效能的重要假说的证据尚不确定,而突触效能是可塑性和学习记忆机制的基础。理论和实验都表明,从突起到母树突的兴奋性突触后电位信号的传递取决于突棘颈形态和阻力。此外,相反方向信号传递的建模预测,位于突棘头部的突触与母树突中的电压并非电隔离。与这一理论预测形成鲜明对比的是,少数几个关于从突棘传出的电信号的测量之一报告说,当缓慢的超极化膜电位变化从树突传播到突棘头部的突触时,突棘颈会大大削弱这些变化。这一结果从根本上挑战了我们对突棘电行为的理解。为了重新检验树突信号向突棘突触传递的具体问题,我们利用高灵敏度 Vm 成像技术,同时对具有不同颈长的 4 组突棘和母树突进行了电信号的光学测量。结果表明,在信号从树突传播到突棘头部的过程中,突棘颈并不滤除膜电位信号。

相似文献

3
Voltage compartmentalization in dendritic spines in vivo.体内树突棘的电压分隔。
Science. 2022 Jan 7;375(6576):82-86. doi: 10.1126/science.abg0501. Epub 2021 Nov 11.
8
Activity-dependent dendritic spine neck changes are correlated with synaptic strength.活性依赖的树突棘颈变化与突触强度相关。
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):E2895-904. doi: 10.1073/pnas.1321869111. Epub 2014 Jun 30.
10
Dendritic discrimination of temporal input sequences in cortical neurons.皮质神经元对时间输入序列的树突分辨。
Science. 2010 Sep 24;329(5999):1671-5. doi: 10.1126/science.1189664. Epub 2010 Aug 12.

引用本文的文献

3
Electrical properties of dendritic spines.树突棘的电学性质。
Biophys J. 2023 Nov 21;122(22):4303-4315. doi: 10.1016/j.bpj.2023.10.008. Epub 2023 Oct 13.
6
Voltage compartmentalization in dendritic spines in vivo.体内树突棘的电压分隔。
Science. 2022 Jan 7;375(6576):82-86. doi: 10.1126/science.abg0501. Epub 2021 Nov 11.
7
Spatio-temporal parameters for optical probing of neuronal activity.用于神经元活动光学探测的时空参数。
Biophys Rev. 2021 Feb 23;13(1):13-33. doi: 10.1007/s12551-021-00780-2. eCollection 2021 Feb.
9
Optical Studies of Action Potential Dynamics with hVOS probes.使用hVOS探针进行动作电位动力学的光学研究。
Curr Opin Biomed Eng. 2019 Dec;12:51-58. doi: 10.1016/j.cobme.2019.09.007. Epub 2019 Sep 23.

本文引用的文献

2
Depolarization gates spine calcium transients and spike-timing-dependent potentiation.去极化门控脊椎钙瞬变和时依赖增强。
Curr Opin Neurobiol. 2012 Jun;22(3):509-15. doi: 10.1016/j.conb.2011.10.004. Epub 2011 Nov 1.
3
Dendritic spines and distributed circuits.树突棘和分布式电路。
Neuron. 2011 Sep 8;71(5):772-81. doi: 10.1016/j.neuron.2011.07.024.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验