Suppr超能文献

形态区对抗真菌药物敏感性测试和毒力研究的影响。

Impact of Morphological Sectors on Antifungal Susceptibility Testing and Virulence Studies.

机构信息

Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria

Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria.

出版信息

Antimicrob Agents Chemother. 2017 Nov 22;61(12). doi: 10.1128/AAC.00755-17. Print 2017 Dec.

Abstract

Morphological heterogeneity of cultures was observed during continued cultivation of amphotericin B (AMB)-resistant isolates on drug-free medium. Outgrowth leads to the emergence of multiple sectors that might result from increased growth rates at drug-free conditions. We evaluated the differences in AMB susceptibility and virulence between sector subcultures (ATSec), AMB-resistant (ATR) strains, and AMB-susceptible (ATS) strains. By comparing AMB-resistant (ATR) strains and sector (ATSec) cultures we observed a highly significant reduction of AMB MICs in ATSec (ATR MIC, 2 to 32 μg/ml; ATSec MIC, 0.12 to 5 μg/ml). Furthermore, survival studies revealed an enhanced virulence of ATSec, which was comparable with that of AMB-sensitive strains (median survival rates for ATS isolates, 72 h; for ATSec isolate ATSec, 84 h; for ATR isolates, 144 h). Our findings clearly demonstrate that spontaneous culture degeneration occurs in and, most importantly, crucially impacts drug efficacy and virulence.

摘要

在无药培养基上继续培养两性霉素 B(AMB)耐药分离株时,观察到培养物的形态异质性。生长导致出现多个扇区,这可能是由于在无药条件下生长速度增加所致。我们评估了 AMB 敏感性和毒力在扇区亚培养物(ATSec)、AMB 耐药(ATR)株和 AMB 敏感(ATS)株之间的差异。通过比较 AMB 耐药(ATR)株和扇区(ATSec)培养物,我们观察到 ATSec 中的 AMB MIC 显著降低(ATR MIC,2 至 32 μg/ml;ATSec MIC,0.12 至 5 μg/ml)。此外,生存研究表明 ATSec 的毒力增强,与 AMB 敏感株相当(ATS 分离株的中位生存率为 72 小时;ATSec 分离株 ATSec 为 84 小时;ATR 分离株为 144 小时)。我们的研究结果清楚地表明,自发的培养退化在两性霉素 B 耐药中发生,更重要的是,这对药物疗效和毒力有重大影响。

相似文献

1
Impact of Morphological Sectors on Antifungal Susceptibility Testing and Virulence Studies.
Antimicrob Agents Chemother. 2017 Nov 22;61(12). doi: 10.1128/AAC.00755-17. Print 2017 Dec.
2
Blocking Hsp70 enhances the efficiency of amphotericin B treatment against resistant Aspergillus terreus strains.
Antimicrob Agents Chemother. 2015 Jul;59(7):3778-88. doi: 10.1128/AAC.05164-14. Epub 2015 Apr 13.
3
Galleria mellonella as a host model to study Aspergillus terreus virulence and amphotericin B resistance.
Virulence. 2015;6(6):591-8. doi: 10.1080/21505594.2015.1045183. Epub 2015 Jun 24.
5
New insight into amphotericin B resistance in Aspergillus terreus.
Antimicrob Agents Chemother. 2013 Apr;57(4):1583-8. doi: 10.1128/AAC.01283-12. Epub 2013 Jan 14.
6
Virulence and thrombocyte affectation of two Aspergillus terreus isolates differing in amphotericin B susceptibility.
Med Microbiol Immunol. 2013 Oct;202(5):379-89. doi: 10.1007/s00430-013-0300-7. Epub 2013 May 31.
7
and the Interplay with Amphotericin B: from Resistance to Tolerance?
Antimicrob Agents Chemother. 2022 Apr 19;66(4):e0227421. doi: 10.1128/aac.02274-21. Epub 2022 Mar 7.
8
Oxidative Stress Response Tips the Balance in Aspergillus terreus Amphotericin B Resistance.
Antimicrob Agents Chemother. 2017 Sep 22;61(10). doi: 10.1128/AAC.00670-17. Print 2017 Oct.
9
Amphotericin B Resistance in Aspergillus terreus Is Overpowered by Coapplication of Pro-oxidants.
Antioxid Redox Signal. 2015 Dec 20;23(18):1424-38. doi: 10.1089/ars.2014.6220. Epub 2015 Oct 8.
10
In vitro and in vivo role of heat shock protein 90 in Amphotericin B resistance of Aspergillus terreus.
Clin Microbiol Infect. 2013 Jan;19(1):50-55. doi: 10.1111/j.1469-0691.2012.03848.x. Epub 2012 Apr 19.

引用本文的文献

1
sectorization: a morphological phenomenon shedding light on amphotericin B resistance mechanism.
mBio. 2025 Apr 9;16(4):e0392624. doi: 10.1128/mbio.03926-24. Epub 2025 Feb 25.
2
Physiological variations in hypovirus-infected wild and model long-term laboratory strains of .
Front Microbiol. 2023 Jun 22;14:1192996. doi: 10.3389/fmicb.2023.1192996. eCollection 2023.
4
Characterization of Accessory Conidia and Their Interactions With Murine Macrophages.
Front Microbiol. 2022 Jun 16;13:896145. doi: 10.3389/fmicb.2022.896145. eCollection 2022.
5
Antifungal Susceptibility Testing: A Primer for Clinicians.
Open Forum Infect Dis. 2021 Sep 9;8(11):ofab444. doi: 10.1093/ofid/ofab444. eCollection 2021 Nov.
7
Treatment of Infections Due to Species Complex.
J Fungi (Basel). 2018 Jul 9;4(3):83. doi: 10.3390/jof4030083.

本文引用的文献

1
Azole Resistance in : A Consequence of Antifungal Use in Agriculture?
Front Microbiol. 2017 Jun 7;8:1024. doi: 10.3389/fmicb.2017.01024. eCollection 2017.
2
Phenotypic heterogeneity promotes adaptive evolution.
PLoS Biol. 2017 May 9;15(5):e2000644. doi: 10.1371/journal.pbio.2000644. eCollection 2017 May.
3
In-host adaptation and acquired triazole resistance in Aspergillus fumigatus: a dilemma for clinical management.
Lancet Infect Dis. 2016 Nov;16(11):e251-e260. doi: 10.1016/S1473-3099(16)30138-4. Epub 2016 Sep 13.
4
Nuclear heterogeneity in conidial populations of Aspergillus flavus.
Fungal Genet Biol. 2015 Nov;84:62-72. doi: 10.1016/j.fgb.2015.09.003. Epub 2015 Sep 9.
5
Galleria mellonella as a host model to study Aspergillus terreus virulence and amphotericin B resistance.
Virulence. 2015;6(6):591-8. doi: 10.1080/21505594.2015.1045183. Epub 2015 Jun 24.
6
Amphotericin B Resistance in Aspergillus terreus Is Overpowered by Coapplication of Pro-oxidants.
Antioxid Redox Signal. 2015 Dec 20;23(18):1424-38. doi: 10.1089/ars.2014.6220. Epub 2015 Oct 8.
7
Tipping the balance both ways: drug resistance and virulence in Candida glabrata.
FEMS Yeast Res. 2015 Jun;15(4):fov025. doi: 10.1093/femsyr/fov025. Epub 2015 May 15.
8
Blocking Hsp70 enhances the efficiency of amphotericin B treatment against resistant Aspergillus terreus strains.
Antimicrob Agents Chemother. 2015 Jul;59(7):3778-88. doi: 10.1128/AAC.05164-14. Epub 2015 Apr 13.
9
Fitness Trade-Offs Associated with the Evolution of Resistance to Antifungal Drug Combinations.
Cell Rep. 2015 Feb 10;10(5):809-819. doi: 10.1016/j.celrep.2015.01.009. Epub 2015 Feb 5.
10
The VELVET Complex in the Gray Mold Fungus Botrytis cinerea: Impact of BcLAE1 on Differentiation, Secondary Metabolism, and Virulence.
Mol Plant Microbe Interact. 2015 Jun;28(6):659-74. doi: 10.1094/MPMI-12-14-0411-R. Epub 2015 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验