European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France.
Acta Crystallogr D Struct Biol. 2017 Oct 1;73(Pt 10):829-840. doi: 10.1107/S2059798317013742. Epub 2017 Sep 29.
Most of the sample holders currently used in macromolecular crystallography offer limited storage density and poor initial crystal-positioning precision upon mounting on a goniometer. This has now become a limiting factor at high-throughput beamlines, where data collection can be performed in a matter of seconds. Furthermore, this lack of precision limits the potential benefits emerging from automated harvesting systems that could provide crystal-position information which would further enhance alignment at beamlines. This situation provided the motivation for the development of a compact and precise sample holder with corresponding pucks, handling tools and robotic transfer protocols. The development process included four main phases: design, prototype manufacture, testing with a robotic sample changer and validation under real conditions on a beamline. Two sample-holder designs are proposed: NewPin and miniSPINE. They share the same robot gripper and allow the storage of 36 sample holders in uni-puck footprint-style pucks, which represents 252 samples in a dry-shipping dewar commonly used in the field. The pucks are identified with human- and machine-readable codes, as well as with radio-frequency identification (RFID) tags. NewPin offers a crystal-repositioning precision of up to 10 µm but requires a specific goniometer socket. The storage density could reach 64 samples using a special puck designed for fully robotic handling. miniSPINE is less precise but uses a goniometer mount compatible with the current SPINE standard. miniSPINE is proposed for the first implementation of the new standard, since it is easier to integrate at beamlines. An upgraded version of the SPINE sample holder with a corresponding puck named SPINEplus is also proposed in order to offer a homogenous and interoperable system. The project involved several European synchrotrons and industrial companies in the fields of consumables and sample-changer robotics. Manual handling of miniSPINE was tested at different institutes using evaluation kits, and pilot beamlines are being equipped with compatible robotics for large-scale evaluation. A companion paper describes a new sample changer FlexED8 (Papp et al., 2017, Acta Cryst., D73, 841-851).
目前在大分子晶体学中使用的大多数样品架在安装到测角仪上时,存储密度有限,初始晶体定位精度也较差。在高通量光束线上,这已经成为一个限制因素,因为数据采集可以在几秒钟内完成。此外,这种精度的缺乏限制了自动化收获系统所能提供的晶体定位信息的潜在好处,这些信息将进一步提高光束线上的对准精度。这种情况促使我们开发了一种紧凑而精确的样品架,以及相应的样品架托、操作工具和机器人转移协议。开发过程包括四个主要阶段:设计、原型制造、使用机器人样品更换器进行测试以及在光束线上进行实际条件下的验证。提出了两种样品架设计:NewPin 和 miniSPINE。它们使用相同的机器人夹具,允许在 uni-puck 足迹式样品架托中存储 36 个样品架,这代表了在该领域常用的干燥运输杜瓦瓶中 252 个样品。样品架托上标有人工和机器可读的代码,以及射频识别 (RFID) 标签。NewPin 提供高达 10 µm 的晶体重定位精度,但需要特定的测角仪插座。使用专为全机器人处理设计的特殊样品架托,存储密度可达 64 个样品。miniSPINE 的精度较低,但使用与当前 SPINE 标准兼容的测角仪支架。鉴于 miniSPINE 更容易集成到光束线上,建议首先使用它来实现新标准。还提出了一种带有相应样品架托的升级版 SPINE 样品架,名为 SPINEplus,以提供一个同质且可互操作的系统。该项目涉及到欧洲的几家同步加速器和耗材及样品更换器机器人领域的工业公司。使用评估套件在不同的研究所中测试了 miniSPINE 的手动处理,并且正在为大规模评估装备兼容的机器人。一篇配套论文描述了一种新的样品更换器 FlexED8(Papp 等人,2017, Acta Cryst.,D73,841-851)。