Zhao Zishu, Han Yuqi, Xu Tingfa, Li Xiangmin, Song Haiping, Luo Jiqiang
School of Optoelectronics, Image Engineering & Video Technology Lab, Beijing Institute of Technology, Beijing 100081, China.
Beijing Key Laboratory of Embedded Real-Time Information Processing Technique, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China.
Sensors (Basel). 2017 Oct 10;17(10):2303. doi: 10.3390/s17102303.
Occlusion is a challenging problem in visual tracking. Therefore, in recent years, many trackers have been explored to solve this problem, but most of them cannot track the target in real time because of the heavy computational cost. A spatio-temporal context (STC) tracker was proposed to accelerate the task by calculating context information in the Fourier domain, alleviating the performance in handling occlusion. In this paper, we take advantage of the high efficiency of the STC tracker and employ salient prior model information based on color distribution to improve the robustness. Furthermore, we exploit a scale pyramid for accurate scale estimation. In particular, a new high-confidence update strategy and a re-searching mechanism are used to avoid the model corruption and handle occlusion. Extensive experimental results demonstrate our algorithm outperforms several state-of-the-art algorithms on the OTB2015 dataset.
遮挡是视觉跟踪中的一个具有挑战性的问题。因此,近年来,人们探索了许多跟踪器来解决这个问题,但由于计算成本过高,它们中的大多数无法实时跟踪目标。提出了一种时空上下文(STC)跟踪器,通过在傅里叶域中计算上下文信息来加速任务,缓解了处理遮挡时的性能问题。在本文中,我们利用STC跟踪器的高效性,并基于颜色分布采用显著先验模型信息来提高鲁棒性。此外,我们利用尺度金字塔进行精确的尺度估计。特别是,使用了一种新的高置信度更新策略和一种重新搜索机制来避免模型损坏并处理遮挡。大量实验结果表明,我们的算法在OTB2015数据集上优于几种最新算法。