Suppr超能文献

膜与表面粘附和分离的反应受限动力学。

The reaction-limited kinetics of membrane-to-surface adhesion and detachment.

作者信息

Dembo M, Torney D C, Saxman K, Hammer D

机构信息

Theoretical Biology and Biophysics, Los Alamos National Laboratory, New Mexico 87545.

出版信息

Proc R Soc Lond B Biol Sci. 1988 Jun 22;234(1274):55-83. doi: 10.1098/rspb.1988.0038.

Abstract

Biological adhesion is frequently mediated by specific membrane proteins (adhesion molecules). Starting with the notion of adhesion molecules, we present a simple model of the physics of membrane-to-surface attachment and detachment. This model consists of coupling the equations for deformation of an elastic membrane with equations for the chemical kinetics of the adhesion molecules. We propose a set of constitutive laws relating bond stress to bond strain and also relating the chemical rate constants of the adhesion molecules to bond strain. We derive an exact formula for the critical tension. We also describe a fast and accurate finite difference algorithm for generating numerical solutions of our model. Using this algorithm, we are able to compute the transient behaviour during the initial phases of adhesion and detachment as well as the steady-state geometry of adhesion and the velocity of the contact. An unexpected consequence of our model is the predicted occurrence of states in which adhesion cannot be reversed by application of tension. Such states occur only if the adhesion molecules have certain constitutive properties (catch-bonds). We discuss the rational for such catch-bonds and their possible biological significance. Finally, by analysis of numerical solutions, we derive an accurate and general expression for the steady-state velocity of attachment and detachment. As applications of the theory, we discuss data on the rolling velocity of granulocytes in post-capillary venules and data on lectin-mediated adhesion of red cells.

摘要

生物黏附通常由特定的膜蛋白(黏附分子)介导。从黏附分子的概念出发,我们提出了一个膜与表面附着和分离物理过程的简单模型。该模型包括将弹性膜变形方程与黏附分子化学动力学方程相耦合。我们提出了一组本构定律,将键应力与键应变联系起来,同时也将黏附分子的化学速率常数与键应变联系起来。我们推导出了临界张力的精确公式。我们还描述了一种快速且准确的有限差分算法,用于生成我们模型的数值解。使用该算法,我们能够计算黏附与分离初始阶段的瞬态行为,以及黏附的稳态几何形状和接触速度。我们模型的一个意外结果是预测到存在这样的状态,即施加张力无法使黏附逆转。只有当黏附分子具有某些本构特性(捕获键)时,才会出现这种状态。我们讨论了这种捕获键的原理及其可能的生物学意义。最后,通过对数值解的分析,我们推导出了附着和分离稳态速度的精确通用表达式。作为该理论的应用,我们讨论了关于毛细血管后微静脉中粒细胞滚动速度的数据以及关于凝集素介导的红细胞黏附的数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验