Sato Takahiro, Orai Yoshihisa, Suzuki Yuya, Ito Hiroyuki, Isshiki Toshiyuki, Fukui Munetoshi, Nakamura Kuniyasu, Schamp C T
Hitachi High-Technologies Corp. 1040, Ichige, Hitachinaka-shi, Ibaraki, Japan.
Kyoto Institute of Technology, 1, Matsugasaki-hashikamicyo, Sakyo-ku, Kyoto, Japan.
Microscopy (Oxf). 2017 Oct 1;66(5):337-347. doi: 10.1093/jmicro/dfx022.
To improve the reliability of silicon carbide (SiC) electronic power devices, the characteristics of various kinds of crystal defects should be precisely understood. Of particular importance is understanding the correlation between the surface morphology and the near surface dislocations. In order to analyze the dislocations near the surface of 4H-SiC wafers, a dislocation analysis protocol has been developed. This protocol consists of the following process: (1) inspection of surface defects using low energy scanning electron microscopy (LESEM), (2) identification of small and shallow etch pits using KOH low temperature etching, (3) classification of etch pits using LESEM, (4) specimen preparation of several hundred nanometer thick sample using the in-situ focused ion beam micro-sampling® technique, (5) crystallographic analysis using the selected diffraction mode of the scanning transmission electron microscope (STEM), and (6) determination of the Burgers vector using multi-directional STEM (MD-STEM). The results show a correlation between the triangular terrace shaped surface defects and an hexagonal etch pit arising from threading dislocations, linear shaped surface defects and elliptical shaped etch pits arising from basal plane dislocations. Through the observation of the sample from two orthogonal directions via the MD-STEM technique, a basal plane dislocation is found to dissociate into an extended dislocation bound by two partial dislocations. A protocol developed and presented in this paper enables one to correlate near surface defects of a 4H-SiC wafer with the root cause dislocations giving rise to those surface defects.
为提高碳化硅(SiC)电子功率器件的可靠性,需要精确了解各种晶体缺陷的特性。特别重要的是要了解表面形态与近表面位错之间的相关性。为了分析4H-SiC晶圆表面附近的位错,已开发出一种位错分析方案。该方案包括以下过程:(1)使用低能扫描电子显微镜(LESEM)检查表面缺陷;(2)使用KOH低温蚀刻识别小而浅的蚀刻坑;(3)使用LESEM对蚀刻坑进行分类;(4)使用原位聚焦离子束微采样®技术制备几百纳米厚的样品;(5)使用扫描透射电子显微镜(STEM)的选定衍射模式进行晶体学分析;(6)使用多方向STEM(MD-STEM)确定柏氏矢量。结果表明,三角形梯田状表面缺陷与由穿晶位错产生的六边形蚀刻坑、线性表面缺陷与由基面位错产生的椭圆形蚀刻坑之间存在相关性。通过MD-STEM技术从两个正交方向观察样品,发现基面位错分解为受两个部分位错束缚的扩展位错。本文开发并提出的方案能够将4H-SiC晶圆的近表面缺陷与导致这些表面缺陷的根源位错联系起来。