Gardeux Vincent, Berghout Joanne, Achour Ikbel, Schissler A Grant, Li Qike, Kenost Colleen, Li Jianrong, Shang Yuan, Bosco Anthony, Saner Donald, Halonen Marilyn J, Jackson Daniel J, Li Haiquan, Martinez Fernando D, Lussier Yves A
Department of Medicine, University of Arizona, Tucson, AZ, USA.
BIO5 Institute, University of Arizona, Tucson, AZ, USA.
J Am Med Inform Assoc. 2017 Nov 1;24(6):1116-1126. doi: 10.1093/jamia/ocx069.
To introduce a disease prognosis framework enabled by a robust classification scheme derived from patient-specific transcriptomic response to stimulation.
Within an illustrative case study to predict asthma exacerbation, we designed a stimulation assay that reveals individualized transcriptomic response to human rhinovirus. Gene expression from peripheral blood mononuclear cells was quantified from 23 pediatric asthmatic patients and stimulated in vitro with human rhinovirus. Responses were obtained via the single-subject gene set testing methodology "N-of-1-pathways." The classifier was trained on a related independent training dataset (n = 19). Novel visualizations of personal transcriptomic responses are provided.
Of the 23 pediatric asthmatic patients, 12 experienced recurrent exacerbations. Our classifier, using individualized responses and trained on an independent dataset, obtained 74% accuracy (area under the receiver operating curve of 71%; 2-sided P = .039). Conventional classifiers using messenger RNA (mRNA) expression within the viral-exposed samples were unsuccessful (all patients predicted to have recurrent exacerbations; accuracy of 52%).
Prognosis based on single time point, static mRNA expression alone neglects the importance of dynamic genome-by-environment interplay in phenotypic presentation. Individualized transcriptomic response quantified at the pathway (gene sets) level reveals interpretable signals related to clinical outcomes.
The proposed framework provides an innovative approach to precision medicine. We show that quantifying personal pathway-level transcriptomic response to a disease-relevant environmental challenge predicts disease progression. This genome-by-environment interaction assay offers a noninvasive opportunity to translate omics data to clinical practice by improving the ability to predict disease exacerbation and increasing the potential to produce more effective treatment decisions.
引入一种疾病预后框架,该框架由基于患者对刺激的特异性转录组反应得出的强大分类方案实现。
在一项用于预测哮喘加重的示例性案例研究中,我们设计了一种刺激试验,该试验可揭示对人鼻病毒的个体化转录组反应。从23名儿科哮喘患者的外周血单个核细胞中定量基因表达,并用人鼻病毒进行体外刺激。通过单受试者基因集测试方法“N-of-1-通路”获得反应。分类器在一个相关的独立训练数据集(n = 19)上进行训练。提供了个人转录组反应的新颖可视化结果。
在23名儿科哮喘患者中,12名经历了反复加重。我们的分类器利用个体化反应并在独立数据集上进行训练,获得了74%的准确率(受试者操作特征曲线下面积为71%;双侧P = 0.039)。使用病毒暴露样本中的信使核糖核酸(mRNA)表达的传统分类器未成功(所有患者均被预测会反复加重;准确率为52%)。
仅基于单个时间点的静态mRNA表达进行预后评估忽略了动态基因组与环境相互作用在表型呈现中的重要性。在通路(基因集)水平上定量的个体化转录组反应揭示了与临床结果相关的可解释信号。
所提出的框架为精准医学提供了一种创新方法。我们表明,量化个人通路水平对与疾病相关的环境挑战的转录组反应可预测疾病进展。这种基因组与环境相互作用试验通过提高预测疾病加重的能力以及增加做出更有效治疗决策的可能性,提供了一个将组学数据转化为临床实践的非侵入性机会。