Suppr超能文献

用于精准医学的RNA测序表达的动态变化:单受试者通路内的N-of-1通路马氏距离预测乳腺癌生存情况。

Dynamic changes of RNA-sequencing expression for precision medicine: N-of-1-pathways Mahalanobis distance within pathways of single subjects predicts breast cancer survival.

作者信息

Schissler A Grant, Gardeux Vincent, Li Qike, Achour Ikbel, Li Haiquan, Piegorsch Walter W, Lussier Yves A

机构信息

University of Arizona Center for Biomedical Informatics and Biostatistics (CB2), Tucson, AZ, USA, Graduate Interdisciplinary Program in Statistics, Department of Medicine and BIO5 Institute, University of Arizona, Tucson, AZ, USA University of Arizona Center for Biomedical Informatics and Biostatistics (CB2), Tucson, AZ, USA, Graduate Interdisciplinary Program in Statistics, Department of Medicine and BIO5 Institute, University of Arizona, Tucson, AZ, USA University of Arizona Center for Biomedical Informatics and Biostatistics (CB2), Tucson, AZ, USA, Graduate Interdisciplinary Program in Statistics, Department of Medicine and BIO5 Institute, University of Arizona, Tucson, AZ, USA University of Arizona Center for Biomedical Informatics and Biostatistics (CB2), Tucson, AZ, USA, Graduate Interdisciplinary Program in Statistics, Department of Medicine and BIO5 Institute, University of Arizona, Tucson, AZ, USA.

University of Arizona Center for Biomedical Informatics and Biostatistics (CB2), Tucson, AZ, USA, Graduate Interdisciplinary Program in Statistics, Department of Medicine and BIO5 Institute, University of Arizona, Tucson, AZ, USA University of Arizona Center for Biomedical Informatics and Biostatistics (CB2), Tucson, AZ, USA, Graduate Interdisciplinary Program in Statistics, Department of Medicine and BIO5 Institute, University of Arizona, Tucson, AZ, USA University of Arizona Center for Biomedical Informatics and Biostatistics (CB2), Tucson, AZ, USA, Graduate Interdisciplinary Program in Statistics, Department of Medicine and BIO5 Institute, University of Arizona, Tucson, AZ, USA University of Arizona Center for Biomedical Informatics and Biostatistics (CB2), Tucson, AZ, USA, Graduate Interdisciplinary Program in Statistics, Department of Medicine and BIO5 Institute, University of Arizona, Tucson, AZ, USA University of Arizona Center for Biomedical Informatics and Biostatistics (CB2), Tucson, AZ, USA, Graduate Interdisciplinary Program in Statistics, Department of Medicine and BIO5 Institute, University of Arizona, Tucson, AZ, USA.

出版信息

Bioinformatics. 2015 Jun 15;31(12):i293-302. doi: 10.1093/bioinformatics/btv253.

Abstract

MOTIVATION

The conventional approach to personalized medicine relies on molecular data analytics across multiple patients. The path to precision medicine lies with molecular data analytics that can discover interpretable single-subject signals (N-of-1). We developed a global framework, N-of-1-pathways, for a mechanistic-anchored approach to single-subject gene expression data analysis. We previously employed a metric that could prioritize the statistical significance of a deregulated pathway in single subjects, however, it lacked in quantitative interpretability (e.g. the equivalent to a gene expression fold-change).

RESULTS

In this study, we extend our previous approach with the application of statistical Mahalanobis distance (MD) to quantify personal pathway-level deregulation. We demonstrate that this approach, N-of-1-pathways Paired Samples MD (N-OF-1-PATHWAYS-MD), detects deregulated pathways (empirical simulations), while not inflating false-positive rate using a study with biological replicates. Finally, we establish that N-OF-1-PATHWAYS-MD scores are, biologically significant, clinically relevant and are predictive of breast cancer survival (P < 0.05, n = 80 invasive carcinoma; TCGA RNA-sequences).

CONCLUSION

N-of-1-pathways MD provides a practical approach towards precision medicine. The method generates the magnitude and the biological significance of personal deregulated pathways results derived solely from the patient's transcriptome. These pathways offer the opportunities for deriving clinically actionable decisions that have the potential to complement the clinical interpretability of personal polymorphisms obtained from DNA acquired or inherited polymorphisms and mutations. In addition, it offers an opportunity for applicability to diseases in which DNA changes may not be relevant, and thus expand the 'interpretable 'omics' of single subjects (e.g. personalome).

AVAILABILITY AND IMPLEMENTATION

http://www.lussierlab.net/publications/N-of-1-pathways.

摘要

动机

个性化医疗的传统方法依赖于对多个患者的分子数据分析。精准医疗的途径在于能够发现可解释的单个体信号(N-of-1)的分子数据分析。我们开发了一个全局框架,即N-of-1-通路,用于对单个体基因表达数据分析采用基于机制的方法。我们之前采用了一种能够对单个体中失调通路的统计显著性进行排序的指标,然而,它缺乏定量可解释性(例如,等同于基因表达倍数变化)。

结果

在本研究中,我们通过应用统计马氏距离(MD)来扩展我们之前的方法,以量化个体通路水平的失调。我们证明了这种方法,即N-of-1-通路配对样本MD(N-OF-1-PATHWAYS-MD),能够检测失调通路(实证模拟),同时在使用有生物学重复的研究时不会增加假阳性率。最后,我们确定N-OF-1-PATHWAYS-MD评分在生物学上具有显著性、临床相关性并且能够预测乳腺癌生存情况(P < 0.05,n = 80例浸润性癌;TCGA RNA测序)。

结论

N-of-1-通路MD为精准医疗提供了一种实用方法。该方法能够生成仅从患者转录组得出的个体失调通路结果的大小和生物学显著性。这些通路为得出具有临床可操作性的决策提供了机会,这些决策有可能补充从获得性或遗传性DNA多态性和突变中获得的个体多态性的临床可解释性。此外,它为适用于DNA变化可能不相关的疾病提供了机会,从而扩展了单个体的“可解释组学”(例如个人组)。

可用性与实施

http://www.lussierlab.net/publications/N-of-1-pathways。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/824a/4765863/dfe9515076c0/btv253f1p.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验